{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MIT2_017JF09_p06

# MIT2_017JF09_p06 - 6 CONVOLUTION OF SINE AND UNIT STEP 6 9...

This preview shows pages 1–2. Sign up to view the full content.

6 CONVOLUTION OF SINE AND UNIT STEP 9 6 Convolution of Sine and Unit Step The sine function q ( t ) has a zero value before zero time, and then is a unit sine wave afterwards: 0 if t < 0 q ( t ) = sin( t ) if t 0 For the LTI systems whose impulse responses h ( t ) are given below, use convolution to de- termine the system responses to a sine function input, i.e., u ( t ) = q ( t ). 1. h ( t ) = 1 Solution: t t y ( t ) = h ( t τ ) q ( τ ) = sin( τ ) = cos( τ ) | t 0 = 1 cos t. 0 0 2. h ( t ) = sin( αt ), where α is a fixed positive number. Solution: t y ( t ) = h ( τ ) q ( t τ ) 0 t = sin( ατ ) sin( t τ ) 0 t = [sin( ατ ) sin t cos τ sin( ατ ) cos t sin τ ] (from a trig. identity) 0 t t = sin t sin( ατ ) cos τdτ cos t sin( ατ ) sin τdτ 0 0 1 t = sin t [sin(( α + 1) τ ) + sin(( α 1) τ )] 2 0 1 t cos t [cos(( α 1) τ ) cos(( α + 1) τ )] (two more trig. identities) 2 0 1 1 1 1 1 = sin t cos(( α + 1) t ) cos(( α 1) t ) + + 2 α + 1 α 1 α + 1 α 1 1 1 1 cos t sin(( α 1) t ) sin(( α + 1) t ) 2 α

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}