quiz3fa00_sols

Quiz3fa00_sols - Quiz 3 Fall 2000 IS1 V1 V2 12k VS V1 − VS V1 V1 − V2 =0 12k 4k 6k 6k 4k 1 Write the node equations at V1 and V2 2 Determine

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Quiz 3 Fall 2000 IS1 V1 V2 12k VS V1 − VS V1 V1 − V2 + + =0 12k 4k 6k 6k 4k + - 1. Write the node equations at V1 and V2 2. Determine the node voltages V1, V2 3. Determine the power supplied by the current sources @ V1 Is2 12k @ V2 Vs = ___[V], Is1 =__[mA], Is2 = ___[mA] (V1 − VS ) + 3V1 + 2(V1 − V2 ) = 0 6V1 − 2V2 = VS − V1 + V2 = 6k * ( I S 2 − I S 1 ) 4V1 = VS + 12k * ( I S 2 − I s1 ) V2 = V1 + 6k * ( I S 2 − I S1 ) = V1 = V2 − V1 + I S1 − I S 2 = 0 6k 2 VS + 3k * ( I S 2 − I S 1 ) 4 VS + 9k * ( I S 2 − I S 1 ) 4 PI S 1 = (V2 − VS ) * I S 1 6k PI S 2 = −V2 * I S 2 Vs Is1 Is2 V1 V2 P(Is1) P(Is2) 12 3 5 9 21 27 -105 16 2 5 13 31 30 -155 Quiz 3 Fall 2000 V1 VS 12k V2 −+ Ix aIx + − 4k Is supernode + a=2[V/mA], VS = __V, IS = __mA Must solve for Vo V V V1 = aI x ; I x = 2 V1 = 2 4k 2 V V2 − 2 + 3V2 + 2VO = 12k * I S 2 7V2 + 4VO = 24k * I S VO − V2 = VS 7 11VO = 7VS + 24k * I S @ sup ernode VO 6k V1 = aI X @ V1 Use node analysis to determine VO VO _ V2 − V1 V2 V + − IS + O = 0 12k 4k 6k VO − V2 = VS Ix = V2 4k Vs Constraint due to source Equation for controlling variable Is 12 9 12k Vo 6 20.72727 3 12.27273 ...
View Full Document

This note was uploaded on 12/01/2011 for the course EE 2120 taught by Professor Aravena during the Fall '08 term at LSU.

Page1 / 2

Quiz3fa00_sols - Quiz 3 Fall 2000 IS1 V1 V2 12k VS V1 − VS V1 V1 − V2 =0 12k 4k 6k 6k 4k 1 Write the node equations at V1 and V2 2 Determine

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online