test1sp01_sols

test1sp01_sols - dq I ab (t ) = (t ) dt 0<t <2 dq q0...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: dq I ab (t ) = (t ) dt 0<t <2 dq q0 × 10−6 [C ] q0 = = [mA] −3 dt 3 3 × 10 [ s ] dq q0 × 10−6 [C ] =− = −q0 [mA] dt 1× 10−3[ s ] q_0 R I_{ab}[0 2][mA] I_{ab}[3 4][mA] P_R(1ms)[mW] V_{ab}(2ms)[V] P_R[3 4][mW] W_R[3 4][muJ] 15 2 5 -15 50 10 450 450 12 3 4 -12 48 12 432 432 18 4 6 -18 144 24 1296 1296 Vab = I ab R Vab (2ms )[V ] = q0 [mA] × R[kΩ] 3 3< t < 4 2 I ab (t ) = −q0 [mA ], P[mW ] = q0 R 4 2 w[3,4] = p( x )dx = q0 R × 10−3[mJ ] 3 q0 PR = I 2 R [mA] 3 PR (1ms ) = ( I ab (1ms )) 2 R I ab (1ms ) = 9 2 3 -9 18 6 162 162 2 w[3,4] = q0 R[ µ J ] t = 3.5ms I ab < 0 R passive Terminal b has higher vol tage P = VI ∞ w = p( x )dx 0 p(t )[W ] = 12[V ]I 0e −at [ A], t > 0 ∞ ∞ é1 ù w[ J ] = 12 I 0 e −ax dx = 12 I 0 ê− e −ax ëa 0 0 w= 12 I 0 [J ] a I_0[A] 20 15 25 a[1/sec] 0.01 0.01 0.01 W_T[J] 24000 18000 30000 20 0.02 12000 V_{bd}[V] 12 18 12 24 R[kOhm] 3346 V_{cd}[V] 8 12 8 16 I_{bc}[mA] 2324 I_{bd}[mA] 4634 I_{ab}[mA] 6958 V_{ed}[V] -12 -18 -10 -16 V_S[V] 30 45 27 48 Vcd = 4k Vbd (voltage divider_ 2k + 4k Ved = 2k * I ed = −2k * I ab VS = 1k * I ab + Vbd + Vde (KVL) I bc = Vbd 2k + 4k I bd = (Ohm' s law) Vbd (Ohm' s law) R I ab = I bd + I bc (KCL) I cb V x = R2 I cb KVL : VS + V x − βV x + R1 I cb = 0 VS + (1 − β ) R2 I cb + R1 I cb = 0 V x = R2 I cb V_s 24 18 18 24 beta 21 21 R_1[kOhm] 46 46 R_2[kOhm] 23 23 V_x -24 -9 -18 -12 I_[cb}[mA] -12 -3 -9 -4 V_{ab}[V] 48 18 36 24 V_{ca}[V] 09 0 12 P_{Vs}[mW] -288 -54 -162 -96 P_{betaVx}[mW] -576 -27 -324 -48 Vca + Vab + Vbc = 0 Vca = R1I cb − βV x PV = VS I ad = VS I cb S Vab = − R1 I cb PβVx = βV x (− I cb ) I1 = RP IS R1 I2 = − I3 = RP = R1 || R2 || R3 1 1 1 1 =+ + RP R1 R2 R3 RP IS R2 RP IS R3 I 4 = 0 (short circuited) I_s[mA] 12 16 30 24 R_1[kOhm] 2 3 3 12 R_2[kOhm] 3 46 3 R_3[kOhm] 6 12 2 4 R_4[kOhm] 10 10 10 10 R_p[kOhm] 1 1.5 1 1.5 I_1[mA] 6 8 10 3 I_2[mA] -4 -6 -5 -12 I_3[mA] 2 2 15 9 I_4[mA] 0 00 0 ...
View Full Document

This note was uploaded on 12/01/2011 for the course EE 2120 taught by Professor Aravena during the Fall '08 term at LSU.

Page1 / 5

test1sp01_sols - dq I ab (t ) = (t ) dt 0<t <2 dq q0...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online