test3sp01_sols

# test3sp01_sols - 2 RTH = R || R R = R 3 RTH RTH VTH a b If...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 RTH = R || ( R + R) = R 3 RTH RTH VTH a + - b If a-b are short-circuited the current will be the short circuit current and V SC I ab = R a VS + - b R Vb Source transformation Define reference node + - RI S R Vab = VS − Vb Vab = VS − R RI S = VTH 3R TH RTH SC PVs = VS (− I ab ) Vs[V] 12.000 24.000 9.000 Is[mA] 5.000 6.000 4.000 R[kOhm] 12.000 15.000 9.000 Rth[kOhm] 8.000 10.000 6.000 Voc[V] -8.000 -6.000 -3.000 Isc[mA] -1.000 -0.600 -0.500 P(Vs)[mW] 12.000 14.400 4.500 6.000 2.000 15.000 10.000 -4.000 -0.400 2.400 * RL = RTH PMX 2 VTH = 4 RTH 2 é1 ù P1k = ê VTH [mW ] ë1 + RTH RTH VTH Vs + - aI R I" R Vs + - KVL KCL : I '+ aI ' = 0 I ' = 0 + V =V =V R ' OC VOC RTH = S TH VOC 2R = I SC 1 + a − KCL : I "+ aI " = I SC VS 2R V = (1 + a ) S 2R KVL : I " = aI" I SC I SC 1kΩ b To determine the Thevenin equivalent R I' + - a R[kOhm] Vs[V] a Voc[V] Isc[mA] Rth[kOhm] Pmx[mW] P(1k)[mW] 6 5 12 12 20 24 2 4 0.5 12 20 24 3 10 1.5 4 2 16 9 50 9 5.76 44.444 1.9931 3 12 2 12 6 2 18 16 KCL : I P = −bI x + IP = Ro abVS2 PI = V y (−bI x ) = R1 RTH VTH = 0 a RTH = b VS Ro R1 = I P R1 + abRo Vy Ro V y = VS I x = − Vs abVs + Ro R1 Vs[V] a b Ro[kOhm] R1[kOhm] Ip[mA] P_I[mW] Rth[kOhm] Vth 40 0.8 0.2 10 2 7.2 128 5.56 0 36 0.5 0.1 12 1 4.8 64.8 7.5 0 24 36 0.5 0.2 0.1 0.5 12 9 1 1 3.2 7.6 28.8 130 7.5 4.74 0 0 aV y R1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online