{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Class_16new

# Class_16new - PHYS809 Class 20 Notes Green function in...

This preview shows pages 1–2. Sign up to view the full content.

1 PHYS809Class20Notes Green function in cylindrical polar coordinates In cylindrical polar coordinates ( ) , , , z ρ φ the Green function is a solution of ( ) ( ) ( ) ( ) 2 4 , , , , , . G z z z z π ρ φ ρ φ δ ρ ρ δ φ φ δ ρ = - - - - (16.1) If φ and z are unrestricted, we can represent the last pair of Dirac delta functions by ( ) ( ) ( ) ( ) ( ) 0 1 1 1 , cos . 2 2 im ik z z m e z z e dk k z z dk φ φ δ φ φ δ π π π - - =-∞ -∞ - = - = = - (16.2) We then represent the Green function in a similar way ( ) ( ) ( ) ( ) 2 0 1 , , , , , cos , , . 2 im m m G z z e k z z g k dk φ φ ρ φ ρ φ ρ ρ π - =-∞ = - (16.3) Substitution into equation (16.1) gives that ( ) , , m g k ρ ρ is a solution of ( ) 2 2 2 1 4 . m m g m k g π ρ δ ρ ρ ρ ρ ρ ρ ρ - + = - - (16.4) The solutions to the homogeneous equations are the modified Bessel functions ( ) m I k ρ and ( ) .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.
• Fall '11
• MacDonald
• Coordinate system, Polar coordinate system, Dirac delta function, Cylindrical coordinate system, cylindrical polar coordinates

{[ snackBarMessage ]}