Class_16new - 1 PHYS809 Class 20 Notes Green function in...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 PHYS809 Class 20 Notes Green function in cylindrical polar coordinates In cylindrical polar coordinates ( ) , , , z ρ φ the Green function is a solution of ( ) ( ) ( ) ( ) 2 4 , , , , , . G z z z z π ρ φ ρ φ δ ρ ρ δ φ φ δ ρ ′ ′ ′ ′ ′ ′ ∇ = ---- (16.1) If φ and z are unrestricted, we can represent the last pair of Dirac delta functions by ( ) ( ) ( ) ( ) ( ) 1 1 1 , cos . 2 2 im ik z z m e z z e dk k z z dk φ φ δ φ φ δ π π π ∞ ∞ ∞ ′ ′-- =-∞-∞ ′ ′ ′ - =- = =- ∑ ∫ ∫ (16.2) We then represent the Green function in a similar way ( ) ( ) ( ) ( ) 2 1 , , , , , cos , , . 2 im m m G z z e k z z g k dk φ φ ρ φ ρ φ ρ ρ π ∞ ∞ ′- =-∞ ′ ′ ′ ′ ′ =- ∑ ∫ (16.3) Substitution into equation (16.1) gives that ( ) , , m g k ρ ρ ′ is a solution of ( ) 2 2 2 1 4 . m m g m k g π ρ δ ρ ρ ρ ρ ρ ρ ρ ∂ ∂ ′- + = -- ∂ ∂...
View Full Document

Page1 / 2

Class_16new - 1 PHYS809 Class 20 Notes Green function in...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online