p20dsv43 - Kinematics WavesandSimpleHarmonicMotion v = d t...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
v = d t d = v f t 1 2 at 2 a =  v t d = v f  v i 2 t d = v i t 1 2 at 2 v f 2 = v i 2 2 a d v c = 2 r T ∣ a c ∣= v 2 r = 4 2 r T 2 a = F net m F g ∣= Gm 1 m 2 r 2 F f ∣= ∣ F N g ∣= G m 1 r 2 F s =− k x g = F g m W = F d cos E k = 1 2 mv 2 W = E E p = mgh P = W t E p = 1 2 k x 2 T = 2 m k v max = A k m T = 2 l g f = v v ± v s f s T = 1 f v = f Kinematics Dynamics Energy Waves and Simple Harmonic Motion
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Acceleration Due to Gravity  or Gravitational Field Near Earth. ........       = 9.81 m/s 2  or 9.81 N/kg Gravitational Constant. ..................... G = 6.67 x 10  -11  N ▪m 2 /kg 2 Radius of Earth. ................................ r e  = 6.37 x 10  6  m   Mass of Earth. ................................... M e  = 5.98 x 10 
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/02/2011 for the course PHYSICS 235 taught by Professor Staff during the Fall '08 term at Rutgers.

Page1 / 2

p20dsv43 - Kinematics WavesandSimpleHarmonicMotion v = d t...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online