Decidable-1 - DecidableLanguages Recallthat: L...

Info iconThis preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
Decidable Languages  
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Recall that: A language     is  Turing-Acceptable if there is a Turing machine  that accepts Also known as:  Turing-Recognizable                         or                           Recursively-enumerable                          languages L M L
Background image of page 2
For any string      : L w w halts in an accept state  M L w halts in a non-accept state M or   loops forever
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Definition: A language      is  decidable if there is a Turing machine ( decider which accepts  and halts on every input string Also known as  recursive  languages L L M
Background image of page 4
For any string      : L w w halts in an accept state  M L w halts in a non-accept state M Every decidable language is Turing-Acceptable
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Sometimes, it is convenient to have Turing  machines with single accept and reject states accept q reject q These are the only halting states That result to possible  halting configurations
Background image of page 6
We can convert any Turing machine to  have single accept and reject states accept q Old machine New machine R x x , R x x , R x x , Multiple  accept states For each tape symbol x One accept state L x x ,
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
i q i q R x x , For all tape symbols      not used for read in the  other transitions of x i q Old machine New machine reject q Multiple  reject states One reject state Do the following for each possible  halting state: For each
Background image of page 8
Input string Accept Reject Decider   for L Decision On Halt: accept q reject q For a decidable language     :  L For each input string, the computation halts in the accept or reject state
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Input string Turing Machine for L accept q reject q For a Turing-Acceptable language     :  L It is possible that for some input string  the machine enters an infinite loop
Background image of page 10
}   7,   5,   3,   2,   {1, = PRIMES Is number      prime?  x Corresponding language: Problem: We will show it is decidable
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
On input number      : x Divide       with all possible numbers between      and   If any of them divides        Then   reject Else   accept   x 2 x Decider for                :   PRIMES x
Background image of page 12
(Input string) is      prime? Decider for  PRIMES Input number x YES NO the decider for the language solves the corresponding problem (Accept) (Reject) x accept q reject q
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Theorem: If a language      is decidable, then its complement      is decidable too  L L Proof: Build a Turing machine          that 
Background image of page 14
Image of page 15
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/02/2011 for the course AR 107 taught by Professor Gracegraham during the Fall '11 term at Montgomery College.

Page1 / 65

Decidable-1 - DecidableLanguages Recallthat: L...

This preview shows document pages 1 - 15. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online