{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

assn2 - 1.138J/2.062J/l8.376J WAVE PROPAGATION Fall 2006 l...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
1.138J/2.062J/l8.376J, WAVE PROPAGATION Fall. 2006 lIIT C. C. lIci Hornc~vork no. 2 Gi~rcn Scp 26,2006. Diic Oct,ohcr 5. 2006. In all exercises, please describe the physical meaning of your mathematical results. Use graphics if it can help the explanation. If you do any numerical computations, feel free to use Matlab. 1. Rcflcct,ion from a scrni-infinit,c rod. Consider t,llc lorlgitiidinal nravcs in a scmci- irlfirlit,c clast,ic rod of llrliforrn cross scct,ion. The crltl at rc; = 0 is st,rcss-ficc. Tllcrc is no cxt,crnal stress along t,hc rotl. The initial displaccrncnt arltl velocity arc : Find the dcflcctiorl in t,hc rotl for all tirrlc t > 0 by using the rrlct,llod of images 2. Read $1. Chapter one. Xot,cs. Consider an infinit,cly long st,ring taut ~vit,ll tcnsiorl T , m < .T < m frcc from any lat,cral slipport,. -4 conccnt,ratcd mass . \I is at,t,acllcd t,o t,hc string at t,llc origin. Sho\v first that Nc~vt,on's law for t,llc mass requires that a a . = (H.2.1) \I-\.' d" ~ ( t ) T-T'L(O-, t) + T-1 +(O+.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.
  • Spring '03
  • GilbertStrang
  • Trigraph, group velocity, dispersion relation, t,hc rotl, ind t,llc rcflcctcd, t,llc lorlgitiidinal nravcs

{[ snackBarMessage ]}