{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

hw7 - EE 261 The Fourier Transform and its Applications...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
EE 261 The Fourier Transform and its Applications Fall 2011 Problem Set Seven Due Friday, November 18 1. (20 points) Handel’s Hallelujah In this problem we will explore the effects of sampling with or without anti-aliasing filters. As we saw in lecture there is a significant distortion of music due to aliasing if we sample slower than twice the highest frequency component. However if we can suppress the high frequency components before sampling we can possibly avoid distortion due to aliasing. In this problem we will use an anti-aliasing filter H ( s ) whose Fourier transform is shown below. H ( s ) is available on the class web site in the Matlab file anti-aliasing.mat , which contains H ( s ) in the vector Hs . ï 4000 ï 3000 ï 2000 ï 1000 0 1000 2000 3000 4000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 s(Hz) H(s) Figure 1: Anti aliasing filter Built into Matlab is a snippet of Handel’s Hallelujah Chorus, you load it into the workspace by typing load handel 1
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This loads two variables into the workspace y that contains about 8 seconds of Handel’s Hallelujah Chorus and Fs which is the sampling frequency used. Finally here is the problem, resample the snippet of Handel’s Hallelujah Chorus down to a sampling frequency of f s = 4096hz that should be half of the original sampling frequency. Now apply the anti-aliasing filter to Handel’s Hallelujah Chorus so that you cut off all frequencies higher than 2048hz, and then resample down to f s = 4096hz. Is there any audible difference between the two versions? Why or why not. Turn in your (commented!) Matlab code along with a short discussion (2 paragraphs) of any audible difference you heard or did not hear. Hints: To resample at half the sampling rate, you can use xhalf = x(1:2:length(x)); Remember to adjust the sampling rate correctly when you use sound or wavwrite . Recall that you can use fft to take the Fourier transform, and ifft to take the inverse Fourier transform. Hs has been arranged in the same way Matlab’s fft returns Fourier transforms. To evaluate H ( s ) X ( s ) try using the .* operator. 2. (25 points) Sampling Oscilloscope Sometimes signals change much faster than electronic devices can sample in order to reconstruct or display the signal on an oscilloscope. However, if a signal is bandlimited
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern