# ph135cS7 - Ph135c. Solution set #7, 5/20/10 1. 8.7 We can...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Ph135c. Solution set #7, 5/20/10 1. 8.7 We can write: d Γ = 2 π | A fi | 2 δ ( E e + E ν- Δ) d 3 p e (2 π ) 3 d 3 p ν (2 π ) 3 = 1 (2 π ) 5 | A fi | 2 δ ( E e + E ν- Δ) p e 2 dp e d Ω e p ν 2 dp ν d Ω ν where Δ = m n- m p . To get the electron momentum distribution, we integrate over all variables except p e . This gives: d Γ dp e = 1 2 π 3 | A fi | 2 Z ∞ dp ν p ν 2 p e 2 δ ( E e + E ν- Δ) = 1 2 π 3 | A fi | 2 Z ∞ dE ν q E ν 2- m ν 2 p e 2 δ ( E e + E ν- Δ) = 1 2 π 3 | A fi | 2 Z ∞ dE ν E ν q E ν 2- m ν 2 p e 2 δ ( E e + E ν- Δ) = 1 2 π 3 | A fi | 2 (Δ- p p e 2 + m e 2 ) p e 2 q (Δ- p p e 2 + m e 2 ) 2- m ν 2 8.8 This time we have: d Γ = 2 π | A fi | 2 δ ( E e + E 1 + E 2- Δ) d 3 p e (2 π ) 3 d 3 p 1 (2 π ) 3 d 3 p 2 (2 π ) 3 = | A fi | 2 (2 π ) 8 δ ( E e + E 1 + E 2- Δ) d Ω e d Ω 1 d Ω 2 E e q E e 2- m 2 dE e E 1 2 dE 1 E 2 2 dE 2 Now we integrate over all variables except E e : d Γ dE e = | A fi | 2 4 π 5 Z δ ( E e + E 1 + E 2- Δ) E e q E e 2- m 2 E 1 2 dE...
View Full Document

## This note was uploaded on 12/04/2011 for the course PHY 7070 taught by Professor Smith during the Spring '11 term at University of Wisconsin.

### Page1 / 5

ph135cS7 - Ph135c. Solution set #7, 5/20/10 1. 8.7 We can...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online