CourseNotes.13 - potential. Although this is true, we will...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
potential. Although this is true, we will often choose (and it will be built into some formulas) the potential to be zero at infinity. Δ V = Δ U q = - W q V = - W q In the equations above we have used the work energy theorem to relate changes in potential energy to the work done on a particle. In this language, the second equation says that the ‘absolute’ potential is the work required to bring a charged particle in from very far away divided by the charge of the particle. It is important to note that the electric potential is a scaler quantity. This is nice because as we will see later on, the potential is very simply related to the electric field. This is nice because scaler quantities are much easier to work with than vector quantities and hence, we will have an easy way of calculating the electric field. 5.2 Calculating the Potential from the Field Before we talk about how to calculate the potential directly, lets look at the connections between the potential and the electric field. The relation between the two is rather simple, but it involves
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/05/2011 for the course PHY 2049 taught by Professor Any during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online