formulas2_001 - Constants: e = 1.6 × 10−19 C micro =...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Constants: e = 1.6 × 10−19 C micro = 10−6 o mp = 1.67 × 10−27 kg = 8.85 × 10−12C 2 /N · m2 me = 9.1 × 10−31 kg k = 1/(4π o) = 9 × 109 N · m2 /C 2 g = 9.8m/s2 µo = 4π × 10−7T · m/A nano = 10−9 Coulomb’s Law: |F | = Electric field: E = |q1 ||q2 | (point charge) 4π o r 2 F q E= (plane) Gauss’ law: Φ = n · E A = ˆ pico = 10−12 q r (point charge) ˆ 4π o r 2 E= dq r (general) ˆ 4π o r 2 E= σ 2o qenc n · E dA = ˆ o Energy: W = F · ds = 1 1 mv 2 − mv 2 = Kf − Ki 2f2i P = F · v (mechanical power) For conservative forces Uf − Ui = − F · ds → Ki + Ui = Kf + Uf U q Electric potential: V = Vb − Va = − b a Ex dx = − Capacitors: q = CV U= Resistors: i = V= b a E · ds C= u= R= q = CV (1 − e−t/RC ) (charging) Magnetism: F = qv × B dB = µo ids × r ˆ 4π r 2 Ex = − ∂V , ∂x K oA (parallel-plate) d q2 2C dq = jA dt q (point charge) 4π o r Ey = − R= ∂V , ∂y B · ds = µo ienc Ez = − ∂V ∂z C = C1 + C2 (parallel) ρL (wire) A P = iV q = qo e−t/RC (discharging) F = iL × B dq (general) 4π o r 1 1 1 + (series) = C C1 C2 1 2 oE 2 V i V= µ = N iA B= τ = µ×B R = R1 + R2 (series) 1 1 1 + (parallel) = R R1 R2 U = −µ · B F µo i 1 i 2 = l 2πr µo i µo i µo iN , (wire) (loop center), (solenoid) 2πR 2R L 1 ...
View Full Document

Ask a homework question - tutors are online