{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

formulas2_002

# formulas2_002 - = ± i R = ρL A(wire P = i± R = R 1 R...

This preview shows page 1. Sign up to view the full content.

Constants: e = 1 . 6 × 10 - 19 C m p = 1 . 67 × 10 - 27 kg m e = 9 . 1 × 10 - 31 kg g = 9 . 8 m/s 2 micro = 10 - 6 ǫ o = 8 . 85 × 10 - 12 C 2 /N · m 2 k = 1 / (4 πǫ o ) = 9 × 10 9 N · m 2 /C 2 μ o = 4 π × 10 - 7 T · m/A nano = 10 - 9 Coulomb’s Law: | vector F | = | q 1 || q 2 | 4 πǫ o r 2 (point charge) Electric field: vector E = vector F q vector E = q 4 πǫ o r 2 ˆ r (point charge) vector E = integraltext dq 4 πǫ o r 2 ˆ r (general) E = σ 2 ǫ o (plane) Gauss’ law: Φ = ˆ n · vector E A = contintegraltext ˆ n · vector E dA = q enc ǫ o Energy: W = integraltext vector F · dvectors = 1 2 mv 2 f - 1 2 mv 2 i = K f - K i P = vector F · vectorv (mechanical power) For conservative forces U f - U i = - integraltext vector F · dvectors K i + U i = K f + U f Electric potential: V = U q V = q 4 πǫ o r (point charge) V = integraltext dq 4 πǫ o r (general) V b - V a = - integraltext b a E x dx = - integraltext b a vector E · dvectors E x = - ∂V ∂x , E y = - ∂V ∂y , E z = - ∂V ∂z Capacitors: q = CV C = o A d (parallel-plate) C = C 1 + C 2 (parallel) U = q 2 2 C u = 1 2 ǫ
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = ± i R = ρL A (wire) P = i± R = R 1 + R 2 (series) q = C± (1-e-t/RC ) (charging) q = q o e-t/RC (discharging) 1 R = 1 R 1 + 1 R 2 (parallel) Magnetism: v F = qvV × v B v F = i v L × v B μ = NiA v τ = vμ × v B U =-vμ · v B F l = μ o i 1 i 2 2 πr d v B = μ o 4 π idvs × ˆ r r 2 c v B · dvs = μ o i enc B = μ o i 2 πR , (wire) μ o i 2 R (loop center), μ o iN L (solenoid) 1...
View Full Document

{[ snackBarMessage ]}