{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

4020-F2011-HW7Solutions

# 4020-F2011-HW7Solutions - MSE 4020 HW7-SOLUTION Problem 1...

This preview shows pages 1–6. Sign up to view the full content.

1 MSE 4020 HW7-SOLUTION 11/10/2011 Problem 1 Force applied on the shank is, F SN = ! D 2 4 2K ( ) = ! D 2 K 2 ! D "#" K = F SN = ! D 2 K 2 \$ # = D 2 \$ # = # = D 2 / 1 n = D " n 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Problem 2 First, divide the whole system into blocks A, B, C and D (see sketch above), and analyze the their relative displacement q (with different indices) between contacting blocks. Angle α is to be determined. W = F t q A = 4 l AB ! q AB + l BD ! q BD ( ) ! K From triangular geometry: q AB sin30 ° = q A sin45 ° ! q AB = 1 2 q A 1/ 2 = 2 2 q A q BD sin75 ° = q AB sin " 2 ! q BD = sin75 ° # q AB sin " 2 = 2 2 q A # sin75 ° sin " 2 l AB # sin75 ° = 2.5t ! l AB = 2.5t sin75 ° l BD # sin " 2 = 0.5t ! l BD = 0.5t sin " 2
3 ! F t = 4 q A 2.5t sin75 ° " 2 2 q A + 2 2 " 0.5t sin # 2 " sin75 ° sin # 2 q A \$ % & & & & ' ( ) ) ) ) " K = 2 2 t 2.5 sin75 ° + 0.5 " sin75 ° sin 2 # 2 \$ % & & & & ' ( ) ) ) ) " K Also from geometry, tan30 ° = 2t l ! l = 2t tan30 ° = 2 3 t ! 2.5t tan75 ° + 0.5t tan " 2 = 2 3 t ! 0.5 tan " 2 = 2 3 # 2.5 tan75 ° = 2.72 ! tan " 2 = 0.5 2.72 = 0.184 ! " 2 = 10.8 ° ! " = 21.6 °

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 Problem 3 ! " z = D #" 4L = D # 2 \$ 4L = D # \$ 2L = 3 # \$ 2 # 12 = 0.433 % ! f = 2 3 #! " z = 2 3 # 0.433 = 0.453 & f = 28000 + 220000 # ! f ( ) 1/2 = 28000 + 220000 # 0.453 ( ) 1/2 = 176000 psi & f = 3 & " z % & " z = & f 3 Twist moment M = \$ D # t ( ) area !"# #& " z # D / 2 = \$ D # t ( ) # & f 3 # D / 2 = \$ D 2 # t 2 ' ( ) * + ,# & f 3 = \$# 3 2 # 1 16 2 ' ( ) ) ) ) * + , , , , # 176000 3 = 89700 in # lb
5 Problem 4 The method to solve this problem is called slab (see the sketch above) approach, F x 1 ! = 0 " # 11 + d # 11 ( ) \$ D + dD ( ) % # 11 \$ D + 2 μ P cos & \$ cos &\$ dx 1 + 2P \$ sin & cos & \$ dx 1 = 0 " # 11 \$ dD + D \$ d # 11 + d # 11 \$ dD cancelled out ! " # \$ # + 2P μ + tan & ( ) \$ dx 1 = 0 From the sketch dD dx 1 = 2tan & " dx 1 = dD 2 \$ cot & " # 11 \$ dD + D \$ d # 11 + P μ + tan & ( ) \$ dD \$ cot & = 0 " D \$ d # 11 + # 11 + P μ \$ cot & + 1 ( ) ' ( ) * \$ dD = 0 " d # 11 # 11 + P + + 1 ( ) = % dD D ,where + = μ \$ cot & # 22 = % P " # 11 % # 22 = # 0 " # 11 + P = # 0 " P = # 0 % # 11 " d # 11 # 11 + # 0 % # 11 ( ) \$ + + 1 ( ) = % dD D " d # 11 %+\$# 11 + + + 1 ( ) \$# 0 = % dD D " d # 11 +\$# 11 % + + 1 ( ) \$# 0 = dD D

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 ! dD D D i D " = d # 11 \$%# 11 & \$ + 1 ( ) %# 0 0 # 11 " ! ln D D i = 1 \$ ln \$%# 11 & \$ + 1 ( ) %# 0 ( ) 0 # 11 ! \$%# 11 & \$ + 1 ( ) %# 0 & \$ + 1 ( ) %# 0 = D D i ' ( ) ) * + , , \$ ! \$%# 11 & \$ + 1 ( ) %# 0 = & \$ + 1 ( ) %# 0 % D D i ' ( ) ) * + , , \$ ! # 11 = # 0 % \$ + 1 \$ ' ( ) * + , % 1 & D D i ' ( ) ) * + , , \$ ' ( ) ) * + , , To find the stress acting at D = D 0 , ! 11 ( ) 0 = ! 0 " # + 1 # \$ % & ' ( ) " 1 * D D i \$ % & & ' ( ) ) # \$ % & & ' ( ) ) # = μ " cot + = 0.05 " cot 5 ° ( ) = 0.5715 F 0 = !
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}