Beam_Deflection_Formulae

Beam_Deflection_Formulae - BEAM DEFLECTION FORMULAE BEAM...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
BEAM DEFLECTION FORMULAE BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM DEFLECTION 1. Cantilever Beam – Concentrated load P at the free end 2 2 Pl EI θ= () 2 3 6 Px yl x EI = 3 max 3 Pl EI δ= 2. Cantilever Beam – Concentrated load P at any point 2 2 Pa EI 2 3f o r 0 6 Px ya x x a EI = −< < 2 o r 6 Pa yx a a x l EI = < 2 max 3 6 Pa la EI δ =− 3. Cantilever Beam – Uniformly distributed load ω (N/m) 3 6 l EI ω 2 22 64 24 x l l x EI ω =+ 4 max 8 l EI ω 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω o (N/m) 3 o 24 l EI ω 2 32 2 3 o 10 10 5 120 x l x l x x lEI ω + 4 o max 30 l EI ω 5. Cantilever Beam – Couple moment M at the free end Ml EI 2 2 Mx y EI = 2 max 2 Ml EI
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
BEAM DEFLECTION FORMULAS BEAM TYPE SLOPE AT ENDS DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER DEFLECTION 6. Beam Simply Supported at Ends – Concentrated load P at the center 2 12 16 Pl EI θ=θ= 2 2 3 for 0 12 4 2 Px l l yx x EI ⎛⎞ = −< < ⎜⎟ ⎝⎠ 3 max 48 Pl EI δ= 7. Beam Simply Supported at Ends – Concentrated load P at any point 22 1 () 6 Pb l b lEI θ= 2 (2 ) 6 Pab l b lEI 222 for 0 6 Pbx yl x b x a lEI = −− << 3 3 6 for Pb l a l b x x lEI b axl =− +
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/05/2011 for the course MSE 4020 at Cornell.

Page1 / 2

Beam_Deflection_Formulae - BEAM DEFLECTION FORMULAE BEAM...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online