This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: + ;;)~~~ (CDS (::J.x)) to s (:l.)<') 4. f(x) = Arctan(vX) ~ / { X J =\. (11\t\ l+~ ;J. . ') Gateway Test #1 page 2 5. Y = In( 2x + a where a is a constant. 2x 6. Find the second derivative for y = , . Simplify the first derivative before (xl)1 taking a second derivative. ~ X!::lX .::: xU I" .eX _1)2(;). .) ~~.;;2 (XI) = .:< ~(XI ::l;)l J (XIJ~ (XI)"f. (./= ;:{X~_ ~"::CXi)\J. ..J(:l.)<il'3~ J ( '1.i)' (X _ r) 'I:,. . 4 j 1/ :: _ ::l. )( + ':l. + I" )< + ~: '4 X + rt (X1J Li &/)'1 <; , 7. Y = X 3 (X + 1) 3. Simplify your answer. I 513  Y3 2../ 3 "2/ 3 .~:: X ':C"+ll (I) +(X+IJ .~ X S jl= _d.XS/~ +5x7f3(x+J)'b:: ;;)X /?'+S/6(X+ 1 ) 3CX+i\/3 3 3 (XtlyI3 ~ I:=. X:l/3 {.;:/ X+5 ( )\r il) = X 'Iy 1 X+5) I 3 (X+lj 13 3 (X+11'13...
View
Full Document
 Fall '08
 BANG
 Calculus, Exponential Function, Derivative, Logarithm, constant function

Click to edit the document details