{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Key quiz 2 f'09

Key quiz 2 f'09 - "L_b Quiz 2 Pledged M ath l lt 30...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: - +---+-.."L-_b'- Quiz 2 Pledged M ath l lt 30 points Print name Time/date began _ -->..o'--- _ T ime/date ended _ You are t o w ork t hrough this quiz in one sitting w ithout t he use o f notes o r a nother person. You need t o attach y our paragraph, " What is a function?" which is the last question. 1. Determine i f t he Intermediate Value Theorem applies t o t he situation below, clearly showing y our work. I f i t does apply, find t he x = c guaranteed by this theorem. (8 points) ( j),f ! ex)=_l- [0,2] x+l i s l A.nde.hne& a:J-X-=-1 f n.J e£se.. 2 Inc../udtf\!j (O".2.J. (3)+£0)=1 '\ lhereJ'u..eJ:VTh I. 1" CJ - S· , And. Co + I --.::, Co \ C 4-1 ./ a.. ::. 0 < c...:. I <: =, '0.::. 2 . 2. Evaluate the f ollowing limits. I nterpret y our l imit graphically. (2 points each) Ij]ot> - V'3 =- tan ' :' 0) x .... - 2 . · :t PO\V'\(_{i - 3!r\ :-IT +0\ '1:: - 3" So _""Tf L( , ]I' :2 .., oJ :L -,,, ' S) b) x lim 1x- 11 'DNE -I , ... HI -6f<J.) ::: . . t whi\e=.. .=. 1) s o o..t'"e )( - t.-" C x-4-) c) ::: - ;;l ;<.-, oJ: =- -;;2 (1.j+':lH) J _ I t.f 1 J rp .J25 - x 2 , X 5, - 3 < x < 0 3. Given t he followi'ng: j (x) = 5--E ,0 < x < 4 6 -x>4 x -2 ' Answer t he following: (8 points) a) lim f (x) x -H =f§ X --.- 5 - == 0 e) Where are t he discontinuities? Classify any discontinuities as removable o r non-removable. 11 oJ: }-== '"1 5 Vn-CQ., X :: l.{ i 5 n&t \ (\ --rhe. &0vY\eu.AL {J/AdL +eX)::: 3 ( & o .'oove'> Yll7Y) V.£7Y}ovoRd..t -tJu. a::1: -n.o:t -3 (b a ..f X =0 _ 4. Attach y our paragraph, " What is a function?" (8 points) 5 J' n CJL X -== 0 is fCx> : : 0 Y\ &t l.N- i3.-tL (0.. a..'o0"'/€ -) .- ...
View Full Document

{[ snackBarMessage ]}