This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: u=) 'vu Horizontal asymptote(s)l Vertical asymptote(s)~ Point(s) where the tangent line is horizontal._. ...;;.{_0iJ=O') _ Interval(s) of increase __'X __ <_· _Oe.I_'_X_>_Y C~)~) Point(s) of inflection ',O'''''''',f+2 Intervals of upward concavity X L _ Maxima to) 0) (if appropriate) Minima tv an e.. (if appropriate) Sketch: (Clearly mark all important aspects.) t1tJI I I l;c~t\ I ~I ljO=~ , ~7 ( ) I page 5 ',,. , page 6 6. Given: y = x%' (x 4)2. Sketch the graph and ~ve the following information: (20 points) DO NOT FIND CONcA VlrY: ~()(L/) (XI) y'= .3 X '/3 3; . . Point(s) where the tangent line is horizontal ( 4J 0) ·. ('11 9) ,.';"\ 1,. . (0)0) ~ ... Point(s) whe're the tangent line iS'vertical > Intervals of increase 0 <. X L. 1/ X"7~ /Y Maxima (I ) q ') (if appropriate) Minima to; 0) (4t 0) (if app~riate) / fA LA. ... 2 I,' (J (fl AX . 1..JIT, (IJ 9)...
View
Full Document
 Fall '08
 BANG
 Math, Emoticon, ASCII art, Amsterdam, angent l ine

Click to edit the document details