Unformatted text preview: PROBLEM 365 shaﬁ AB of radius r, to tube CD of inner radius r2. Knowing that a torque T 13 applied
to end A of shaft AB and that end D of tube CD 15 ﬁxed, (0) determine the magnitude
and location of the maximum shearing stress in the annular plate, (b) show that the SOLUTION angle through which end B of the shaft rotates with respect to end C of the tube is ‘
1 U56. 0 MQ 500‘7 CONSIS+lnj ¢BIC 1‘ TING—[T O‘F 5th AB and an Inner ’7 t r1 Par’Hon, of “me $54}: BC. 'Hse lS PQW‘HJ on Dd+e¢ ”takes 0"}
beta: f3 " x The {Jane per unt‘i‘ I! T \
Djij‘HI o‘F circum'Feweaaa 4 @\ , ft K F31 \. f j M =3 O \\,_._’ 1/}
ftCQﬂP)/o  T = _ T t .. ZTrtfp" ((1) Maximum shearFina S‘i‘ress OCQUV‘S aci Io= V” Sheam'nj 5+Miu ... 1;... d
d4) ZHGt/OI'FB CRESEZWGIIGL" (=3 =217Gt { 2": 3. 65 An annular plate of thickness I and modulus of rigidity G is used to connect I TM 2 2." tnz‘ (i) —.’§__._L___
T“ G ‘zTrGftro" The ~1sz cu‘rcuMi‘erev‘i‘ad a’fsppaccmevd
in Wuhan) ﬁwaliq eff) is abs: Yap = False aqn = T7409
:znGt/J3
”I.
1251,: at T 5";
ZWGt n P3 2 2"” MG 2P1 7‘
l l l
““2717 " "€fi‘ﬁ ‘F} "I O
L—l: i_l :— ‘1 (4'! i_] _ _ r m" ‘ * ...
View
Full Document
 Summer '10
 STAFF

Click to edit the document details