Osc_Waves_Lectures

Osc_Waves_Lectures - Lectures on Oscillations and Waves...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Lectures on Oscillations and Waves Michael Fowler, UVa, 6/6/07 FROM A CIRCLING COMPLEX NUMBER TO THE SIMPLE HARMONIC OSCILLATOR. .................... 3 Describing Real Circling Motion in a Complex Way. .......................................................................................... 3 Follow the Shadow: Simple Harmonic Motion. ................................................................................................... 4 OSCILLATIONS. ........................................................................................................................................................ 5 Introduction. ......................................................................................................................................................... 5 Brief Review of Undamped Simple Harmonic Motion . ........................................................................................ 6 Energy. ................................................................................................................................................................. 7 A Heavily Damped Oscillator. ............................................................................................................................. 8 Interpreting the Two Different Exponential Solutions . ........................................................................................ 9 *The Most General Solution for the Highly Damped Oscillator. ....................................................................... 10 *The Principle of Superposition for Linear Differential Equations. .................................................................. 11 A Lightly Damped Oscillator . ............................................................................................................................ 11 The Q Factor. ..................................................................................................................................................... 13 *Critical Damping . ............................................................................................................................................ 13 Shock Absorbers and Critical Damping. ............................................................................................................ 14 A Driven Damped Oscillator: the Equation of Motion . ..................................................................................... 16 The Steady State Solution and Initial Transient Behavior . ................................................................................ 16 Using Complex Numbers to Solve the Steady State Equation Easily. ................................................................ 17 Back to Reality . .................................................................................................................................................. 19 And Now to Work…. ........................................................................................................................................... 21 THE PENDULUM. .................................................................................................................................................... 22 The Simple Pendulum. ........................................................................................................................................ 22 Pendulums of Arbitrary Shape. .......................................................................................................................... 23 Variation of Period of a Pendulum with Amplitude. .......................................................................................... 24 INTRODUCING WAVES: STRINGS AND SPRINGS. ........................................................................................ 25 One-Dimensional Traveling Waves . .................................................................................................................. 25 Transverse and Longitudinal Waves. ................................................................................................................. 26 Traveling and Standing Waves. .......................................................................................................................... 27 ANALYZING WAVES ON A STRING. ................................................................................................................. 27 From Newton’s Laws to the Wave Equation. ..................................................................................................... 27 Solving the Wave Equation . ............................................................................................................................... 29 The Principle of Superposition. .......................................................................................................................... 30 Harmonic Traveling Waves. ............................................................................................................................... 30 Energy and Power in a Traveling Harmonic Wave . .......................................................................................... 31 Standing Waves from Traveling Waves. ............................................................................................................. 33 BOUNDARY CONDITIONS: AT THE END OF THE STRING. ........................................................................ 35 Adding Opposite Pulses . .................................................................................................................................... 35 Pulse Reflection. ................................................................................................................................................. 35 An Experiment on Fixed End Reflection and Free End Reflection . ................................................................... 35 Understanding Sign Change in Pulse Reflection . .............................................................................................. 36 Free End Boundary Condition. .......................................................................................................................... 39 SOUND WAVES. ....................................................................................................................................................... 40 “One-Dimensional” Sound Waves. .................................................................................................................... 40
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Relating Pressure Change to How the Displacement Varies. ............................................................................ 41 From F = ma to the Wave Equation . ................................................................................................................ 42 Boundary Conditions for Sound Waves in Pipes. ............................................................................................... 42 Harmonic Standing Waves in Pipes. .................................................................................................................. 43 Traveling Waves: Power and Intensity . ............................................................................................................. 43 WAVES IN TWO AND THREE DIMENSIONS . .................................................................................................. 45 Introduction. ....................................................................................................................................................... 45 The Wave Equation and Superposition in One Dimension . ............................................................................... 45 The Wave Equation and Superposition in More Dimensions. ............................................................................ 45 How Does a Wave Propagate in Two and Three Dimensions? . ........................................................................ 46 Huygen’s Picture of Wave Propagation. ............................................................................................................ 47 Two-Slit Interference: How Young measured the Wavelength of Light . ........................................................... 49 Another Bright Spot . .......................................................................................................................................... 51 THE DOPPLER EFFECT. ....................................................................................................................................... 52 Introduction. ....................................................................................................................................................... 52 Sound Waves from a Source at Rest. .................................................................................................................. 52 Sound Waves from a Moving Source. ................................................................................................................. 53 Stationary Source, Moving Observer. ................................................................................................................ 54 Source and Observer Both Moving Towards Each Other. ................................................................................. 55 Doppler Effect for Light. .................................................................................................................................... 55 Other Possible Motions of Source and Observer. .............................................................................................. 55 APPENDIX: COMPLEX NUMBERS. .................................................................................................................... 56 Real Numbers. .................................................................................................................................................... 56 Solving Quadratic Equations. ............................................................................................................................ 56 Polar Coordinates. ............................................................................................................................................. 59 The Unit Circle. .................................................................................................................................................. 60 COMPLEX EXERCISES. ........................................................................................................................................ 62 OSCILLATIONS AND WAVES HOMEWORK PROBLEMS. ........................................................................... 63 Oscillations . ....................................................................................................................................................... 63 Waves. ................................................................................................................................................................ 69
Background image of page 2
3 From a Circling Complex Number to the Simple Harmonic Oscillator ( A review of complex numbers is provided in the appendix to these lectures. ) Describing Real Circling Motion in a Complex Way We’ve seen that any complex number can be written in the form i zr e θ = , where r is the distance from the origin, and
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/07/2011 for the course PHYSICS 152 taught by Professor Michaelfowler during the Fall '07 term at UVA.

Page1 / 72

Osc_Waves_Lectures - Lectures on Oscillations and Waves...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online