This preview shows page 1. Sign up to view the full content.
Unformatted text preview: . 6. Probelm # 30 page 46 in Rudin . 7. (a) Show that the Cantor set C = T n N E n (dened in Rudin 2.44) is uncountable. [ Hint : Use ternary numbers and a diagonal argument similar to Rudin 2.14 .] (b) Show that, for any > , there is a union of intervals with total length < that contains the Cantor set C . [ Hint : C E n , and each of the 2 n intervals in E n is contained in an open interval of length (1 + ) / 3 n ]. (c) Show that the Cantor set C R is compact. 8. Assume ( X, d ) is a connected metric space. Prove that the only subsets that are both open and closed are X and . 9. If in a metric space ( X, d ) we have B A X , then the set B is a connected subset of ( A, d ) (i.e. A with the relative topology) if and only if B is connected subset of ( X, d ) ....
View
Full
Document
This note was uploaded on 12/07/2011 for the course MATH 18.100B taught by Professor Prof.katrinwehrheim during the Fall '10 term at MIT.
 Fall '10
 Prof.KatrinWehrheim

Click to edit the document details