formulas201 - MATH201 Formula Sheet n ∑ xi n n 2 2 ∑ (...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH201 Formula Sheet n ∑ xi n n 2 2 ∑ ( xi − x ) ∑ xi − i =1 n s 2 = i =1 = i =1 n −1 n −1 n x= ∑x i =1 i n QU + 1.5IQR QU + 3IQR QL − 1.5IQR IQR = QU − QL 2 s = s2 p (n + 1) 100 QL − 3IQR z= x−µ σ µ = E ( X ) = ∑ xP( x) σ 2 = ∑ ( x − µ ) 2 P ( x) n n! = x x!(n − x)! µ = np x−x s σ = σ2 n P ( x ) = p x (1 − p ) n − x x z= P( x) = λx e −λ x! µ=λ IQR ≈ 1.3 s x ± zα / 2 x ± zα / 2 σ n n= 2 zα / 2σ 2 E2 σ= λ σx = µx = µ σ n x ± zα / 2 N −n N x ± zα / 2 n= σ = np (1 − p ) σ n x ± tα / 2 s n N −n N 2 zα / 2 p (1 − p ) E2 x ± tα / 2 x−µ σ/ n s ˆ p ± zα / 2 n df = n − 1 n s z= s n df = n − 1 N −n N ˆ p ± zα / 2 ˆ ˆ p (1 − p) n ˆ ˆ p (1 − p ) n ˆ np ≥ 15 ˆ nq ≥ 15 N −n N MATH201 Formula Sheet x − µ0 z= z= σ/ n X2 = t= x − µ0 x − µ0 z= s/ n df = n − 1 s/ n ˆ p − p0 np 0 ≥ 15 p 0 (1 − p 0 ) n nq 0 ≥ 15 (n − 1) s 2 2 σ0 df = n − 1 ( x1 − x 2 ) − D0 z= 2 1 t= ( x1 − x 2 ) − D0 1 1 s + n n 1 2 df = n1 + n 2 − 2 2 p 2 2 s s + n1 n 2 2 (n1 − 1) s12 + (n 2 − 1) s 2 s= n1 + n2 − 2 2 p ( x1 − x 2 ) − D0 t= 2 s12 s 2 + n1 n2 2 ( s12 / n1 + s 2 / n2 ) 2 df = 2 2 ( s1 / n1 ) 2 ( s 2 / n2 ) 2 + n1 − 1 n2 − 1 z= z= ˆ ˆ ( p1 − p 2 ) − D0 1 1 ˆ ˆ p (1 − p ) + n1 n2 ( x1 − x 2 ) ± zα / 2 d ± zα / 2 sd nd 2 s12 s 2 + n1 n2 ˆ p= d − D0 s d / nd t= d − D0 s d / nd 1 1 ( x1 − x 2 ) ± tα / 2 s 2 + p n1 n2 df = n1 + n 2 − 2 sd nd df = n d − 1 sd = df = nd − 1 x1 + x 2 n1 + n 2 d ± tα / 2 nd F= ∑ (d i =1 i − d )2 nd − 1 2 s larger 2 ssmaller ( x1 − x 2 ) ± tα / 2 df = 2 s12 s 2 + n1 n 2 2 ( s12 / n1 + s 2 / n2 ) 2 2 ( s12 / n1 ) 2 ( s 2 / n2 ) 2 + n1 − 1 n2 − 1 ...
View Full Document

This note was uploaded on 12/07/2011 for the course MATH 201 taught by Professor Crissinger during the Fall '08 term at University of Delaware.

Ask a homework question - tutors are online