{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

formulas201

# formulas201 - MATH201 Formula Sheet n ∑ xi n n 2 2 ∑ xi...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH201 Formula Sheet n ∑ xi n n 2 2 ∑ ( xi − x ) ∑ xi − i =1 n s 2 = i =1 = i =1 n −1 n −1 n x= ∑x i =1 i n QU + 1.5IQR QU + 3IQR QL − 1.5IQR IQR = QU − QL 2 s = s2 p (n + 1) 100 QL − 3IQR z= x−µ σ µ = E ( X ) = ∑ xP( x) σ 2 = ∑ ( x − µ ) 2 P ( x) n n! = x x!(n − x)! µ = np x−x s σ = σ2 n P ( x ) = p x (1 − p ) n − x x z= P( x) = λx e −λ x! µ=λ IQR ≈ 1.3 s x ± zα / 2 x ± zα / 2 σ n n= 2 zα / 2σ 2 E2 σ= λ σx = µx = µ σ n x ± zα / 2 N −n N x ± zα / 2 n= σ = np (1 − p ) σ n x ± tα / 2 s n N −n N 2 zα / 2 p (1 − p ) E2 x ± tα / 2 x−µ σ/ n s ˆ p ± zα / 2 n df = n − 1 n s z= s n df = n − 1 N −n N ˆ p ± zα / 2 ˆ ˆ p (1 − p) n ˆ ˆ p (1 − p ) n ˆ np ≥ 15 ˆ nq ≥ 15 N −n N MATH201 Formula Sheet x − µ0 z= z= σ/ n X2 = t= x − µ0 x − µ0 z= s/ n df = n − 1 s/ n ˆ p − p0 np 0 ≥ 15 p 0 (1 − p 0 ) n nq 0 ≥ 15 (n − 1) s 2 2 σ0 df = n − 1 ( x1 − x 2 ) − D0 z= 2 1 t= ( x1 − x 2 ) − D0 1 1 s + n n 1 2 df = n1 + n 2 − 2 2 p 2 2 s s + n1 n 2 2 (n1 − 1) s12 + (n 2 − 1) s 2 s= n1 + n2 − 2 2 p ( x1 − x 2 ) − D0 t= 2 s12 s 2 + n1 n2 2 ( s12 / n1 + s 2 / n2 ) 2 df = 2 2 ( s1 / n1 ) 2 ( s 2 / n2 ) 2 + n1 − 1 n2 − 1 z= z= ˆ ˆ ( p1 − p 2 ) − D0 1 1 ˆ ˆ p (1 − p ) + n1 n2 ( x1 − x 2 ) ± zα / 2 d ± zα / 2 sd nd 2 s12 s 2 + n1 n2 ˆ p= d − D0 s d / nd t= d − D0 s d / nd 1 1 ( x1 − x 2 ) ± tα / 2 s 2 + p n1 n2 df = n1 + n 2 − 2 sd nd df = n d − 1 sd = df = nd − 1 x1 + x 2 n1 + n 2 d ± tα / 2 nd F= ∑ (d i =1 i − d )2 nd − 1 2 s larger 2 ssmaller ( x1 − x 2 ) ± tα / 2 df = 2 s12 s 2 + n1 n 2 2 ( s12 / n1 + s 2 / n2 ) 2 2 ( s12 / n1 ) 2 ( s 2 / n2 ) 2 + n1 − 1 n2 − 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online