hmwk10_11 - ISyE 3232 Stochastic Manufacturing and Service...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ISyE 3232 Stochastic Manufacturing and Service Systems Fall 2011 H. Ayhan Homework 10 November 16, 2011 (For your practice only) 1. Suppose there are two tellers taking customers in a bank. Service times at a teller are independent, exponentially distributed random variables, but the first teller has a mean service time of 3 minutes while the second teller has a mean of 6 minutes. There is a single queue for customers awaiting service. Suppose at noon, 3 customers enter the system. Customer A goes to the first teller, B to the second teller, and C queues. To standardize the answers, let us assume that T A is the length of time in minutes starting from noon until Customer A departs, and similarly define T B and T C . (a) What is the probability that Customer A will still be in service at time 12:05? (b) What is the expected length of time that A is in the system? (c) What is the expected length of time that A is in the system if A is still in the system at 12:05?...
View Full Document

This note was uploaded on 12/07/2011 for the course ISYE 3232 taught by Professor Billings during the Fall '07 term at Georgia Institute of Technology.

Ask a homework question - tutors are online