Phys_322_HW6

Phys_322_HW6 - Phys 322 HW6 Solution 1. From Snell’s Law:...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Phys 322 HW6 Solution 1. From Snell’s Law: n1 sin θ i = n2 sin θ t ; tan θ i = yo s o , tan θ t = − yi si ; For small θ , sin θ ≈ tan θ , thus 2. Eq. (5.16): y ns n1 yo ny = − 2 i , therefore M T = i = − 1 i yo n2 so so si 1 1 2 1 1 = (n − 1) , = (n − 1) − , where R2 = − R1 , so R R f R1 f 1 2 R1 = 2 f (n − 1) = 10cm . Eq. (5.17): 1 1 9 111111 10cm =−= − =− , so si = − +=, = −1.1cm . so si f si f so 10cm 1cm 10cm 9 Image is virtual, erect and larger than the object. 3. M T = −5 , so si = 5 ; and so + si = 60cm . The two equations can be easily so solved, then we have so = 10cm , si = 50cm . 50cm 111 1 1 6 = 8.3cm . =+= + = , so f = f so si 10cm 50cm 50cm 6 Similar as Problem 2, R1 = 2 f (n − 1) = 8.3cm 4. The image will be inverted if it’s to be real, so the set must be upside down or else something more will be needed to flip the image. M T = −3 , so si 1 1 1 1 + == . We can get so = 0.8m , hence the = 3 ; then s o 3 s o f 0 .6 m so distance is L = s o + si = 4so = 3.2m . 5. L = s o + si , so si = L − so ; and 111 1 1 1 + = , then + = . Getting rid of so si f so L − so f 2 the denominators, f (L − so ) + fs o = so (L − so ) , so − Ls o + Lf = 0 . 1 Solving the equation, so = d = s o + − so − = L ± L2 − 4 Lf ; so 2 L + L2 − 4 Lf L − L2 − 4 Lf − = L2 − 4 Lf ; 2 2 d 2 = L2 − 4 Lf , therefore f = L2 − d 2 4L 2 ...
View Full Document

Page1 / 2

Phys_322_HW6 - Phys 322 HW6 Solution 1. From Snell’s Law:...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online