mws_gen_fft_spe_pptdiscretefourier

mws_gen_fft_spe_pptdiscretefourier - NumericalMethods

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Numerical Methods Discrete Fourier Transform    Part: Discrete Fourier Transform  http://numericalmethods.eng.usf.edu
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
For more details on this topic  Go to  http://numericalmethods.eng.usf.edu Click on Keyword Click on Discrete Fourier Transform 
Background image of page 2
You are free to  Share  – to copy, distribute, display and  perform the work to  Remix  – to make derivative works
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Under the following conditions Attribution  — You must attribute the work in the  manner specified by the author or licensor (but  not in any way that suggests that they endorse  you or your use of the work).  Noncommercial  — You may not use this work  for commercial purposes.  Share Alike  — If you alter, transform, or build  upon this work, you may distribute the resulting  work only under the same or similar license to  this one. 
Background image of page 4
Chapter 11.04 : Discrete Fourier  Transform (DFT)   Major: All Engineering Majors Authors: Duc Nguyen http://numericalmethods.eng.usf.edu Numerical Methods for STEM undergraduates 12/09/11 http://numericalmethods.eng.usf.edu 5 Lecture # 8 
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Discrete Fourier Transform Recalled the exponential form of Fourier series  (see Eqs. 39, 41 in Ch. 11.02), one gets: -∞ = = k t ikw k e C t f 0 ~ ) ( { } - × = T t ikw k dt e t f T C 0 0 ) ( 1 ~    (39, repeated) (41, repeated)                                             http://numericalmethods.eng.usf.edu 6
Background image of page 6
                                            http://numericalmethods.eng.usf.edu 7 , ,....... , 3 , 2 , 3 2 1 t n t t t t t t t n = = = = then Eq. (39) becomes: - = = 1 0 0 ~ ) ( N k n t ikw k n e C t f (1) If time “   ” is discretized at  t Discrete Fourier Transform
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Discrete Fourier Transform cont. To simplify the notation, define: n t n = (2) Then, Eq. (1) can be written as: - = = 1 0 0 ~ ) ( N k n ikw k e C n f (3) Multiplying both sides of Eq. (3) by  n ilw e 0 - , and performing the summation on “  ”, one n obtains (note:  l = integer number)                                             http://numericalmethods.eng.usf.edu 8
Background image of page 8
                                            http://numericalmethods.eng.usf.edu 9 n ilw N n N k n ikw k N n n ilw e e C e n f 0 1 0 1 0 0 1 0 0 ~ ) ( - - = - = - = - ∑ ∑ × = × ∑ ∑ - = - = - = 1 0 1 0 2 ) ( ~ N n N k n N l k i k e C π (4) (5) Discrete Fourier Transform cont.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Discrete Fourier Transform cont. Switching the order of summations on the 
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/31/2011 for the course CEE 305 taught by Professor Nguyen,d during the Fall '08 term at Old Dominion.

Page1 / 51

mws_gen_fft_spe_pptdiscretefourier - NumericalMethods

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online