math2930_2011fa_week07_PS07Sol_Zehnder(1)

math2930_2011fa_week07_PS07Sol_Zehnder(1) - gt (HIM-H )%...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: gt (HIM-H )% -=t>r-—-$ Yl: (a 2 Y1: 756 it th". #7 VP: Ailey-i. 7f“: iAf-E ‘29 «Ai'e 7F": ?A€’f‘ .. 2A$€ ’t «b24755 it 416214: ’16 #15” N 7?» '3. 2 . _‘ __ ‘ - - 2. ._-r- a ’- l- A; [L- if- +12 4- M7114 I 2e“? 3,5 m— ._..__—— 2. The characteristic equation for the homogeneous problem is r2 + 277 + 5 : 0, with complex roots 7" : 71 :i: 2i. Hence ycfif) 2 c1 e—t cos 2t + ege“f sin 21:. Since the function g(t) : 3 Sin 5215 is not proportional to the solutions of the homogeneous equation, set Y 2 Aces 213 + B sin 2t. Substitution into the given ODE, and come paring the coefficients, results in the system of equations B t 4A : 3 and A + 48 : 0. Hence Y I 7% cos 212 + % sin 215. The general solution is y(t) : yaw) + Y. 10. From Problem 9, yaw is known. Since cos mat is a solution of the homoge— neous problem, set Y : At cos wot + Bt sin we 13. Substitution into the given ODE and comparing the coefficients results in A = 0 and B = fi . Hence the general solution is y(t) 2 c1 cos wot + Cg sin Lug t + gig sin wot . 9. The characteristic equation for the homogeneous problem is r2 -I— L03 : O, with complex roots r 2 iwgi. Hence yam : c1 cos mo t + C2 sin mo 25. Since in aé 0J0 , set Y = A cos wt + B sin wt. Substitution into the ODE and comparing the co- efficients results in the system of equations (Lag _ w2)A = I and (tag — w2)B = 0. Hence Y : m—u- cos wt. The general solution is fit) : 310(3) + Y. 14. The characteristic equation for the homogeneous problem is 7‘2 + 4 = 0, With roots 7" : i 22'. Hence ycbf) = (:1 cos 215 + Cg sin 2t. Set Y1 2 A+ Bt + 0152. Come paring the coefficients of the respective terms, we find that A : —1/8, B 2 0, C : 1/4. Now set Y2 : D st, and obtain D : 3/5 . Hence the general solution is = cl cos 2t+cQsin 2t * l/8+t2/4+Bet/5. Invoking the initial conditions, we require that 19/40 + (:1 : 0 and 3/5 + 202 : 2. Hence c1 : ‘19/40 and (:2 = 7/10. mm. W “0%) (m mas- o z u m 3’ 5.1mm am N/m .‘DF" “(5)10; pct/G) 5 /0Cv~h(3 5 aim/J WILL” “FELLJO M 3 Ade LJQ‘Z “I‘D/J‘sflmwz‘: 7 ~ 7 w _ - - 2 r r 5%.: *3/45 mztf/jéé‘fl Ma): 0:4. at I: 51%, £43 wad _ _¢<’/a_/_= 23% 3:} Va; {007/ ' (14/175. 00 ?’/fi"l¢¢‘/i) (m) A 232/57 U.) 4:65:27 “(1&5 77' {I Tfl/r'Z/Z7ZJ€<J4 3’7? I 0 29M m‘figasf‘wzo V L L = {H W” S Q1: /o“(;,/M5 fo 3 0 7 f I : @I/ejéym/flscc Ma: 4C 2 , as” [/01 Q : A (a; gas. '5 7d 551'”: Log?" __ _ ,é 1 (flora, :74 f 7 (W) ‘ /0 _ .603 (WM 1‘) 0? J i "WU/435111051; *idvfl <13 W“; (970') = Odo/5? 5&7 ]T.(a} Here m:1, 7:025, w§=2, F022. . « » Hence Lassa} : Z2: eos(wt — J), 3 where A = 1/(2—w2)2+w2/16 =41xf64—63w2+16w4 ,and toIiJIKZE‘TZ). 9 (b) The amplitude is Ampfiiude ‘ 18.(a) The homogeneous solution is 71605} = A cos t + B sin t. Based on the method .g of undetermined coeflicients, the particular solution is Hence the general solution of the ODE is Mt) : uc(2f),+ U Invoking the initial conditions, we find that A : 3/ (W2 — 1) and B : 0. Hence the response is 3 a“) I l—w2 [cos wt ~ cos t]. 3 8 lg “0 +éctf+LL Caz/3,. €4.3qu 3 a) Sficdj flake. R V3. w (A: 5“pr £3) L.) w E 5' H3 6 Male /2/ ,7 f32 37 mg“ x47 ‘7 7249—} /% Lo 314-3 ’39? U 2359 2/0 /2, 21,9} 2 5’5" / 3 2 60 /¢ 2‘99?! #5" “:75” M, ,ér / 7 .53 H? .445” /7 ,35’ 2 .35 C. ) «CE, W! Ar VIA-,1 44 0min Am, (may 5744/?) - ' 3- 'I j ’4. m ‘ a J- '1- [K- #3 +1. .22: M WW we“ I! / 1- r f 6f 7‘35»: 15% ~ca I! E 5 .4 3 2 1. DD muaiéq 10/7/11 4:50 PM C:\Documents a...\hw3.m 1 of 1 %example for Math 2930 Fall 2011 %numerical integration of 2nd order equation %u"+.2u'+u+.2*u“3=oos(wt), u(O)=O, u'(O)=O %from 0 to 100, with plotting steps of 0.1 time! units u0=0; VO=—0, Y0=[u0 v0]; %initial conditions Tspan=[0:.1:100]; %times for plotting [T,Y]=ode23('sample3',Tspan,YO); figure(1) plot(T,Y(:,l)) xlabel('t') ylabel('u') R=0.5*(max(Y(800:1000,1))—min(Y(800:1000,1))) 10/7/11 4:50 PM C:\Documen...\sam91e3.m 1 of 1 function dy=sample3(t,y) w=1.; dy = zeros(2,1); % a column vector dY(l)=y(2); dy(2)=cos(W*t)—y(1)-.2*y(2)-.2*y(1).“3; m mus—gt _ V 7‘ ’ 21:; 27! _;__2_77'_____ __ Mm “Mm—#mmm‘M—twaw 0 Wm V971. ___ __._____WLEL§.M_MMV%6 W Y mm ' WWfi—éfioiijé’mmfl 5mL¢+ @36‘i'w_u_é)__mfififiw "1 V SM pd; ~ (9 ' ____ _______ __________ Wfiriirdflw _,______MWfifiwwjfiwwwjfiégm "fame 31“ ' A/3 4» v‘: Q Na‘fc +143} (/95 90:: smfljW/Qfi“ “(277)7me , ...
View Full Document

Page1 / 10

math2930_2011fa_week07_PS07Sol_Zehnder(1) - gt (HIM-H )%...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online