Business14-math 108

Business14-math 108 - Math Learning Center Boise State 2010...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math Learning Center Boise State 2010 Logarithmic functions: week 14 Business Todays topic is logarithms (or in short hand - logs). The concept of logs was initially developed (350 years before calculators) to make multiplication and division easier by transforming multiplication into addition and division into subtraction. Today, the use of logarithms is extensive but due to calculators, logs are no longer used for the primary purpose of turning multiplication into addition and division into subtraction. Hopefully, by knowing the basic premise as to why logs were developed, it will be easier to build an understanding for logs as throughout this activity, the relationship between multiplication and addition (division and subtraction) will be very important. Last week, the critical question was asked: Are exponential functions one-to-one? (One-to one means that for each input value there is exactly one output value and for each output value there is exactly one input value.) The purpose of this question is that any function that is one-to one has an inverse function. Exponential functions were defined as gG where u U or U If we are talking about exponential functions having inverses in the beginning of a logarithm activity, there must be a reason. That reason is that logs are precisely the inverse function of exponential functions defined as G where u U or U The in indicates that base that we are working with. For example the specific inverse relation ships: The inverse of is The inverse of is The inverse of is There are some easy logs to figure out by using the idea of inverse functions. Because logs and exponential functions are inverses, when we see We need to think So how does this work? Given , think this should be easy to recognize that y=2....
View Full Document

This note was uploaded on 12/09/2011 for the course MATH 108 taught by Professor Alinaschimpf during the Fall '09 term at Boise State.

Page1 / 6

Business14-math 108 - Math Learning Center Boise State 2010...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online