Hd let n a z hx gd a nh p rgd ha zha xx q b

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: orm—l deriv—tive of GD F xote th—t the norm—l points —w—y from the region of interest { sin™e we9re ™onsidering z ! HD let n a z HX ” ” @GD a @nH P rGD @~ ; ~ HA ¡ @ zHA xx ” Q B ¨ H I @G & H @G  T I @ ¨¨ HG A C & HbC H  H a R H @H ¨ @  &H&@' @z ¨¨¨ D D D z =0 U S 4 P@z z HA@ IA P@z C z HA I CI a P @ C H H ™os@' 'HA C @z z HA A = P @ C H H ™os@' 'HA C @z C z HA A = z z a = @ C H H ™os@' 'HA C z A @ C H H ™os@' 'HA C z A = Pz a @ C H H ™os@' 'HA C z A = xote th—t the terms whi™h ’™—n™el to zero4 do so ˜e™—use the deriv—tives of the two terms of GD sum to zero when ev—lu—ted —t z H a HF xowD plug this into equ—tion @IAF xote th—t we only need to integr—te over the ™ir™le whi™h h—s potenti—l V ˜e™—use the integr—nd is zero elsewhereF 2 232 2 2 2 232 2 2 2 232 2 232 I  ¨@~ A a R x 'H  2 =0 a Vz P  2 'H =0 a H =0  2 2 @V A @ C H2 2 232 2 Pz H ™os@' 'HA C z A = 232 H a 3=2 H =0 @ C H2 H ™os@' 'H A C z 2 A 2 ¨aV I vetting  a HX p z . a2 +z 2 ¨@~ A a x Vz P  2 'H =0  a H 3=2 H =0 @H2 C z 2 A P H dH d'H dH d'H 2.7.c. Show t...
View Full Document

Ask a homework question - tutors are online