# A2 z 2 1 pa u 2 12 h 0 2 5 uz 2 dh p i pi a a

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: hat, along the axis of the circle (   is 3 dH d'H a H), the potential 5 z H =0 sing the sustitution u a H C z nd du a PHX 2 2 z ¨@~ A a V x P Vz P a  4 2 'H =0  a2 + z 2 1 du 2 u=z 2 2 3=2 d'H u !a2 +z 2 1 @ PA u = 2 12 'H =0  2 5 u=z 2 d'H p I pI a a Cz z 'H ! z I a V  P p I z P a Cz Vz P 2 =0 2 a V I p 2 ! 2 d'H 2 ! z a2 C z 2 2.7.d. how tht t lrge distnes @ C z ) a A the potentil n e expnded in  power series in @ C z A D nd tht the leding terms reX 2 2 2 2 2 1 ! ¨a P I R @Qa z A C S @Q a C a A C : : : = C V @ C z A @ C z A erify tht the results of prt  nd d re onsistent with eh other in their ommon rnge of vlidityF V a2 2 2 2 z 232 2 Q 2 2 2 4 22 a  H V z 2 ¨@~ A a P x dH d'H H =0 H =0 @2 C H2 H os@' 'H A C z 2 A3=2 '   2  a H2 H os@' 'H A  3=2 Vz H 2 C z 2 ¡ 3=2 I C  a P  dH d'H 2 C z 2 'H =0 H =0 sing the ylor expnsion @I C xAn a I C nx C n@n IAx C : : : 2 3 H   a H H H H H Vz H I Q   os@' ' A C IS   os@' ' A C : : : dH d'H a  P  Cz R  Cz P @ C z A = 'H H H   a H H H H H Vz H Q   os@' ' A C IS   os@' ' A C : : : dH d'H a  P  Cz R  Cz P @ C z A = 'H H   a Q H H os@' 'HA Vz H a P  Cz P @ C z A = 'H H H H H H H C IS  C   os @' ' A P os@' ' A C : : : dHd'H R @ C z A  H  H os@' 'H A Vz I H Q  a = P  Cz P @ C z A 'H P IS H C ...
View Full Document

## This note was uploaded on 12/08/2011 for the course PHYSICS 505 taught by Professor Liu during the Winter '08 term at University of Michigan.

Ask a homework question - tutors are online