{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# F10HW09 - 1 Problem 5.13 trting with eqution SFQP in tksonX...

This preview shows pages 1–4. Sign up to view the full content.

1 Problem 5.13 Starting with equation 5.32 in Jackson: ~ A ( ~ r ) = 0 4 Z V ~ j ( ~ r ) 1 j ~ r   ~ r 0 j d 3 r 0 = 0 4 Z 2 ' 0 =0 Z 1 cos 0 =   1 0 @ ~! ¢ ~ r 0 | {z } !r 0 sin 0 ^ ' 0 1 A 1 X ` =0 ` X m =   ` 4 2 ` + 1 r ` < r ` +1 > Y m £ ` ( 0 ; ' 0 ) Y m ` ( ; ' ) ! r 0 2 d (cos 0 ) d' 0 r 0 = a = 0 4 !a 3 1 X ` =0 ` X m =   ` 4 2 ` + 1 r ` < r ` +1 > Z 2 ' 0 =0 Z 1 cos 0 =   1 Y m £ ` ( 0 ; ' 0 ) Y m ` ( ; ' ) sin 0 ^ ' 0 d (cos 0 ) d' 0 = 0 !a 3 1 X ` =0 ` X m =   ` 1 2 ` + 1 r ` < r ` +1 > Y `;m ( ; ' ) Z 2 ' 0 =0 Z 1 cos 0 =   1 Y m £ ` ( 0 ; ' 0 ) sin 0 ^ ' 0 d (cos 0 ) d' 0 (1) Since ^ ' 0 =   sin ' 0 ^ x + cos ' 0 ^ y , the integral becomes: Z 2 ' 0 =0 Z 1 cos 0 =   1 Y m £ ` ( 0 ; ' 0 ) (   sin 0 sin ' 0 ^ x + sin 0 cos ' 0 ^ y ) d (cos 0 ) d' 0 We know that sin 0 sin ' 0 = sin e i'   e   i' 2 i = 1 i q 2 3 ¢   Y 1 1 ( 0 ; ' 0 )   Y   1 1 ( 0 ; ' 0 ) £ and sin 0 cos ' 0 = sin e i' + e   i' 2 = q 2 3 ¢   Y 1 1 ( 0 ; ' 0 ) + Y   1 1 ( 0 ; ' 0 ) £ . By exploiting orthogonality, the integral becomes: r 2 3 Z 2 ' 0 =0 Z 1 cos 0 =   1 Y m £ ` ( 0 ; ' 0 ) ¢   i   Y l 1 ( 0 ; ' 0 ) + Y   1 1 ( 0 ; ' 0 ) ¡ ^ x +     Y l 1 ( 0 ; ' 0 ) + Y   1 1 ( 0 ; ' 0 ) ¡ ^ y £ d (cos 0 ) d' 0 = r 2 3 ¢   i   1 1 +   1 1 ¡ ^ x +     1 1 +   1 1 ¡ ^ y £ Plugging this into equation (1) yields: ~ A ( ~ r ) = 0 !a 3 1 2(1) + 1 r 1 < r (1)+1 > r 2 3 ¢   i   Y l 1 ( ; ' ) + Y   1 1 ( ; ' ) ¡ ^ x +     Y l 1 ( ; ' ) + Y   1 1 ( ; ' ) ¡ ^ y £ ~ A ( ~ r ) = 0 !a 3 1 2(1) + 1 r 1 < r (1)+1 > [   sin sin ' ^ x + sin cos ' ^ y ] ~ A ( ~ r ) = 0 !a 3 1 3 r < r 2 > sin [   sin ' ^ x + cos ' ^ y ] | {z } ^ ' ~ A ( ~ r ) = 0 !a 3 1 3 r < r 2 > sin ^ ' 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Inside the sphere: ~ A in ( ~ r ) = 1 3 0 !a 3 r a 2 sin ^ ' = 1 3 0 !ar sin ^ ' Outside the sphere: ~ A out ( ~ r ) = 1 3 0 !a 3 a r 2 sin ^ ' = 1 3 0 ! a 4 r 2 sin ^ ' ~ B = r ¢ ~ A = 1 r sin @ @ (sin A ' )^ r   1 r @ @r ( rA ' ) ^ ~ B in = 1 r sin @ 1 3 0 !ar sin 2 ^ r   1 r @ 1 3 0 !ar 2 sin ^ = 1 r sin 1 3 0 !ar 2 sin cos ^ r   1 r 1 3 0 !a 2 r sin ^ = 2 3 0 !a cos ^ r   sin ^ ~ B out = 1 r sin @ 1 3 0 ! a 4 r 2 sin 2 ^ r   1 r @ 1 3 0 ! a 4 r sin ^ = 1 r sin 1 3 0 ! a 4 r 2 2 sin cos ^ r   1 r 1 3 0 !   a 4 r 2 sin ^ = 1 3 0 ! a 4 r 3 2 cos ^ r + sin ^ 2
2 Problem 5.15 2.1 First, we use Amp ere's Law to determine ~ B for a single wire carrying current I ^ z : I ~ B ¡ d ~ l = 0 I end B 2 r = 0 I = ) ~ B = 0 I 2 r ^ ' where the direction of ~ B comes from applying the right-hand rule. Since ~ H = ~ B= 0 : ~ H = I 2 r ^ ' The magnetic scalar potential ¨

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 100

F10HW09 - 1 Problem 5.13 trting with eqution SFQP in tksonX...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online