This preview shows page 1. Sign up to view the full content.
Unformatted text preview: MATH 572 Numerical Methods for Scientific Computing II Winter 2005 Assignment #4 due : Thursday , March 10 1. Consider the 2step BDF scheme, u n + 1 2 2 u n = hf ( u n ). a) Find the characteristic roots 1 ( h ) , 2 ( h ) for the test equation and plot them using Matlab over the interval 10 h 0. b) Show analytically that the negative real axis is contained in the region of absolute stability. (Note: the scheme is actually Astable, but it is not required to show that here.) 2. The Lorenz system is defined by y 1 y 2 y 3 = ( y 2 y 1 ) ry 1 y 2 y 1 y 3 y 1 y 2 by 3 . These equations were originally derived as a model for thermal convection; the variables represent the temperature, density, and velocity in a certain fluid flow. It was discovered by numerical computations that the parameters = 10 , b = 8 / 3 , r = 28 yield a system with chaotic dynamics. Solve this system with initial conditions y 1 (0) = 0 , y 2 (0) = 1 , y...
View
Full
Document
 Fall '08
 CONLON
 Math

Click to edit the document details