Chpater 6 section 3

# Chpater 6 section 3 - Chapter6Section3 November1,2010...

This preview shows pages 1–6. Sign up to view the full content.

Chapter 6 Section 3 The Central Limit Theorem 1 November 1, 2010 Mr. Kenneth Horwitz

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The Central Limit Theorem In addition to knowing how individual data values vary  about the mean for a population, statisticians are  interested in knowing how the means of samples of the  same size taken from the same population vary about  the population mean. 2
Distribution of Sample Means sampling distribution of sample means   is a  distribution obtained by using the means computed  from random samples of a specific size taken from  a population. Sampling error   is the difference between the  sample measure and the corresponding population  measure due to the fact that the sample is not a  perfect representation of the population. 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Properties of the Distribution of  Sample Means The mean of the sample means will be the same as  the population mean. The standard deviation of the sample means will be  smaller than the standard deviation of the  population, and will be equal to the population  standard deviation divided by the square root of the  sample size. 4
The Central Limit Theorem As the sample size  n  increases, the shape of the  distribution of the sample means taken with

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 12/09/2011 for the course STATS 221 taught by Professor Nielson during the Fall '10 term at BYU.

### Page1 / 19

Chpater 6 section 3 - Chapter6Section3 November1,2010...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online