Unformatted text preview: Y α P = u α ∈A f1 ( Y α ) , f1 p i α ∈A Y α P = i α ∈A f1 ( Y α ) . 3. ±ind a bijection from N to N 2 . 4. Construct a sequence of open sets U n ( n = 1 , 2 , . . . ) of R such that ∩ ∞ n =1 U n is not open. 5. Prove the statements ii, iii, and iv on Page 13 of the textbook....
View
Full Document
 Fall '08
 Rothschild,L
 Topology, Sets, Empty set, Supremum, Limit of a sequence, Topological space

Click to edit the document details