CDA3101-Fall2011-Recitation06

CDA3101-Fall2011-Recitation06 - 0000 00010000 00000111...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Multiplication Use Booth's Algorithm to find the product 6x5 in signed binary notation. 6 = 0110 5 = 0101
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Solution: Operation: A Q Q -1 M Count Subtract 0000 0101 0 0110 4 Shift 1010 0101 0 0110 4 Add 1101 0010 1 0110 3 Shift 0011 0010 1 0110 3 Subtract 0001 1001 0 0110 2 Shift 1011 1001 0 0110 2 Add 1101 1100 1 0110 1 Shift 0011 1100 1 0110 1 Done 0001 1110 0 0110 0 Answer: 00011110 = 30
Background image of page 2
Multiplication Use Booth's Algorithm to find the product -3x9 in signed binary notation. -3 = 11101 9 = 01001 *Why are we using 5 bits now, instead of 4?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Solution Operation: A Q Q -1 M Count Subtract 00000 01001 0 11101 5 Shift 00011 01001 0 11101 5 Add 00001 10100 1 11101 4 Shift 11110 10100 1 11101 4 Shift 11111 01010 0 11101 3 Subtract 11111 10101 0 11101 2 Shift 00010 10101 0 11101 2 Add 00001 01010 1 11101 1 Shift 11110 01010 1 11101 1 Done 11111 00101 0 00000 0 Answer: 1111100101 = -27
Background image of page 4
Division Divide 7 (00000111) by 2 (0010 0000)
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Step Quotient Divisor Remainder Initial value 0000 00100000 00000111 Rem= Rem – Div 0000 00100000 11100111 Rem<0 => +Div 0000 00100000 00000111 Shift Div Right 0000 00010000 00000111 Rem = Rem – Div 0000 00010000 11110111 Rem<0 => +Div
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0000 00010000 00000111 Shift Div Right 0000 00001000 00000111 Rem = Rem Div 0000 00001000 11111111 Rem<0 => +Div 0000 00001000 00000111 Shift Div Right 0000 00000100 00000111 Rem = Rem-Div 0000 00000100 00000011 Rem>=0; sll Q, Q0 = 1 0001 00000100 00000011 Shift Div Right 0001 00000010 00000011 Rem = Rem Div 0001 00000010 00000001 Rem>=0; sll Q, Q0 = 1 0011 00000010 00000001 Shift Div right 0011 00000001 00000001 Operation: A Q M Count Shift 0000 0111 0010 4 Subtract 0000 1110 0010 4 Restore 1110 1110 0010 4 Shift 0000 1110 0010 3 Subtract 0001 1100 0010 3 Restore 1111 1100 0010 3 Shift 0001 1100 0010 2 Subtract 0011 1000 0010 2 Insert 1 0001 1000 0010 2 Shift 0001 1001 0010 1 Subtract 0011 0010 0010 1 Insert 1 0001 0010 0010 1 Done 0001 0011 0010 Answer: 0011 = 3 Remainder: 0001 = 1...
View Full Document

This note was uploaded on 12/10/2011 for the course CDA 3101 taught by Professor Small during the Fall '08 term at University of Florida.

Page1 / 7

CDA3101-Fall2011-Recitation06 - 0000 00010000 00000111...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online