This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: EE221A Linear System Theory Problem Set 8 Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2007 Issued 11/27; Due 12/6 Problem 1: State vs. Output Feedback. Consider the plant described by: ˙ X = AX + Bu (1) y = CX (2) where A = bracketleftbigg 1 7 4 bracketrightbigg , B = bracketleftbigg 1 2 bracketrightbigg , C = [1 3] (3) Find the closed loop characteristic equation if the feedback is: ( a ) u = [ f 1 f 2 ] X , and ( b ) u = ky . Problem 2: Controllability and Observability. u(s) (a) s+a u(s) x (s) (= y(s)) 1 K 2 s+a K 2 2 x (s) C 2 + 1 s+a K 1 1 x (s) C 1 + y(s) (b) Figure 1: Figure for Problem 2. Consider the systems shown in Figures 1 ( a ) and ( b ). Is system ( a ), with state variable x 1 as shown, controllable and observable? For what conditions on a i ,K i , and C i is system ( b ), with state variables x 1 and x 2 as shown, controllable and observable? By referring to the definitions of controllability and observability, explain these results.observable?...
View
Full Document
 Fall '10
 ClaireTomlin
 Electrical Engineering, Department of Electrical Engineering and Computer Sciences, Linear System Theory, controllable canonical form, state variable x1, DC Servo

Click to edit the document details