Notes4

# Notes4 - FINITE SQUARE WELL As a last example consider the ﬁnite square well potential “V0 for —-a<x<a V“ I l o for Ix> a[1145

This preview shows pages 1–23. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: FINITE SQUARE WELL As a last example, consider the ﬁnite square well potential “V0, for —-a<x<a, V“) I l o, for Ix] > a, [1145] where V0 is a (positive) constant (Figure 2.17). Like the delta-function well, this potential admits both bound states (with E < 0) and'scatteritig states (with'E > 0). We'll-look ﬁrst at the bound states. .. '— In the region 2: < -—a the potential is zerois'o the Schrodingerequation reads hZ d211, (12¢. 2 _— = E 9 = 1 2m (1’):2 w 0: dxz K V; where . «/—2 E x a + [2.146] I is real and positive. The general solution is tux) = A exp(-—-ch) + B exp(tcx), but the ﬁrst temt blows up (as x —->' —oo), so the physically admissible solutiOn (as beforef-see Equation 2.119) is ' em = Be”, tori-é —a. [2.147] ' ' ' FIGURE 2.17: The ﬁnite square well (Equation 2.145). in the region —a < x < a, V(x) 2 —V0, and the Schrodinger equation reads a? (12110 (131,1; "354:2 ‘VW=E‘1[” 0" cm I‘m" where t/ 2m (E + V0) h Although E is negative, fo-tr bound states, it must be great-er than —V(j, by the old theorem E > Vmin (Problem 2.2); so I is also real and positive. The general 39 - . l . [2.148] Ill solution is tﬂx) = C'sinax) + D cos(Lr.), for — a < x a, ‘ {2.149] where C and D are arbitrary constants. Finally, in the region x > a the potential is again zero; the general solution is tﬂx) = F exp(-icx) + GeXpch)‘, but the second term blows up (as x —> 00), so we are left with \$00 '= Few”, for x > a. [2.l50] The next step is to impose boundary conditions: 15' and dW/dﬁt‘ continuous at —a and +a. But we can save a little time by noting that this otential is an even function, so we can assume with no loss of generality that the solutions are either even or odd (Problem 2.1(c)). The advantage of this is that we need only impose the boundary conditions on one side (say, at +a); the other side is then automatic, since tﬂ—x) 2 “£1,000. I’ll work outgthe e‘vensolutions; you get to do the odd ones in Problem 2.29. The cosine is even (and the sine is odd), so I’m looking for solutions of the form Fe‘“, for x > a, 1.00:) = DcosClx), for 0 < x < a. [2.151] 1/x(—-x), for x < 0. The continuity of in), at x = a, says Fe‘” = D ocean), [2.152] and the continuity of d tit/(ix, says HKFe_m = —ID sinﬂa). [2.1531 Dividing Equation 2.153 by Equation 2.152, we that I K = ItanCla). [2.154]; \/ (zo/zF—t 1t Sit/2 2n ' 511/2 2 FIGURE 2.18: Graphical solutiou to Equation 2.156, for zo = 8 (even states). This is a formula for the allowed energies, since K and l areboth functions of E. To solve for E, we ﬁrst adept some nicer notation: Let 2: E Ia, and 20 a ZmVo. \$2.155] According to Equations 2.146 and 2.148, 051+ 13) = 2mV0/h2, so m = '23 — zz, and Equation 2.154 reads tanz = ,/ (zo/z)2 +1. [2.156] This is a transcendental equation for z (and hence for E) as a function of Zn (which is a measure of the “size” of the well). It can be solved numerically, using a computer, or graphically, by plotting tanz and ,/ (mg/2:)2 — 1 on the same grid, and looking for points of intersectibn (see Figure 2.18). Two limiting cases are of special interest: 1. Wide, deep well. If :0 is very large, the intersections occur just slightly below 3,, = HIT/2, with 11 odd; it follows that 1 7 1 n-rr-h- -—-—-—. .1 7 2m(2ct)2 E2 5] EH+VOE But E + V0 is the energy above the bottom of the well, and on the right side we have precisely the inﬁnite square well energies, for a well of wiﬁih: 2n (see Equation 2.27)—uor rather, half of them, since this n is odd. (The other ones, of course, come from the odd wave functions, as you’ll discover in Ptobleritt 21.290810 the ﬁnite sq-guare well goes over to the inﬁnite square well, as V0 -—> do: 'liiloWe-v'er. for any ﬁnite V0 there are only a ﬁnite number of bound states. 2. Shallow, narrow well. As 2:0 decreases, there are fewer ante state-s, until ﬁnally (for m < H / 2, where the lowest odd state disappeaer ewe remains. It is interesting to note, however, that there is always one bottttldt state, no matter how “weak” the well becomes. _;_;';;______;_;__;:M;;z;_;;:;__ W g5; "£53m ,_ 343/ _____£pfaeﬂ&m..___, : / X/Z‘WW‘” - ( ) E <2: E, __—:._,.,.___ __ .___.~ _—_.___—__M__,—__——___—.WW _ 591% .: . E .2 m1 «9W? 46;sz <59 em“ cam /‘ .5? .9 Mt .- .- meﬁm Vﬂdéﬂ : A a. ﬁ‘ x .. __._.4 gm'mmi ‘z/gx * I 14—- a}; 3‘14, _ . ' J J Eire/lake : .- £414-: 1-521"1:2;324414 _,__..AJ_J:'Z u >3 EU II ,3 h ~L Kg )3“ * iv ‘ :1 h by N 3 E ...A.-.._. _._.A._._.A.. - _ _ﬁ"A—._- 47—; k, W, = Maj/KL 1.1 [#318,411 ,6; If _. _ _ L # _ . __ _ __________C‘yo&b___mﬁr_:i_________________.________é[7'—TE'ZTZM 7, , w _ W, XIM#Z(£7§'0A.__:::_§Z’§%RVV?W,m,{;@_é_é,€_4km ‘_ __‘(2m./c'c:4s_;?10/ _ __ 4 WWW; v ._ Lg W,Wiwi.r._.._.____.._____.____-.mumWW._..._________vg?é;2§f — -— ____.r, Mm ———— ~—-r---~w~ﬁﬁmm————-mwr ——m——T#— ~ﬂe/MM/Pr ﬁrm—- _ _ “A _ _ __ _ __ m “ +¥m _______ _ _ __ _ ____ 2%3_ {21442358 7 _.-,h________.-€9?€/( 42 55%,"w-.- A [fie/J: O ) we 64/: 019%): A £244 37.. 522;. «37'? [ha 4409/ 07:6 em/Daﬂe/(f' f A , 343/ AZ. Lﬁkce d/za’ = (RE/ML; 4 )£/3>,¢ ' if 1;! 21:7 . ﬂat , me 642: e/lx'vc. 7%. 74%»? ‘fdymzé'es .- A , (/9 ..(Z;.)+=V-L ; __ (a2) :25 ____'Zf’f a: :iLLngLZ _ _ __"____m_ W ﬂ _ _ J =' :*" “LA: —_ _ ____ _— f 31:7} Z”:_::::_"_":f:;w ” : ?:*"‘5"“f*‘—“‘f:i;i:i"“‘ .j _ “14>..- . ﬁve; (I: W44___eye/L£/ae&:_?_j_;ALEi: . 6/ -V/L , ____/.‘z{_m(mr. .. A; Vazémwszaﬁm ,,V,_..‘_~_.__‘._AM,Zi / A >_____4b_dd___é§P€A&/a¢é_____cg%l_.z___ u..- __ U, i . m nab—L:- -/}f ” £947.. LQ/JJ __ . _ A ; .__;____________;___:if[M+;5_:g(242;);JWL_Q________ . __ 1:34;_,g4;;;ﬂ<;;g_;;m;92__gz;_¢g__&¢z_gm%1 s/(ZM A zﬁ/Mwwf .50 4A eye/midi fa wr‘zﬁ/ 7%. 7/ r‘ J => sz;/}a{>4= or A; /j§> We” ._ __ 11.3,, 4139‘,4,Aéf'.¢a44ékﬂé 2%; ? ra.daa/ Lzr «cf/v ./.a No (7) (731/64 2%? /}a{> (I: 4/! 6/ «em-“M 256: yaw/£22.. cc , (2" 49/: 5e. 4 [if /;i> (L? d’wrre ez/eawzéa 0c. fz/%> = ac/jfx 21%“sz /M (Edam/{44 was _ 35 MM 2;: Asgaﬁa [74» 927214,) M,» ,f [ii/1),,» xxx/1,» ,.—... —... —.-- —. .L_.,__.: . ,, ,,,_.,,,, W4 ‘R'Am.,_._ﬂ"_2. _..._H+A,....A 7.1 L -.Lz___};_A‘L_z_ ._ A 1:. / _ r_.__.dL_—_—-’,Aﬂwmw__, ...:—:____Zéf?z2;Z—-ﬁz é. \$12134 43/1: —— -— -—~~-M=%>w-L; Him 4*» id? /9 «mm/M i- — -—-—-—_—-—— u.— Htﬁg#w_‘¥ —— ——————--— _..__ A 7 7A — —~ A—«a —- — — W £92266 [a 0 4m” /6/+/) -/rr(»v=&/) a. o ) ,é‘é ﬂail/27429213 w 754 m>o: /(/+1> a. MKMH) , (.2) .04 mm» :. [(291) a,_»zt..(m_—/) = (wry—MM) = MIN/MM) ﬂ/Zm ,- zﬁw 1:? /(/,+/) >/ /M/(/m/+/) m/ /m/ s. 1’ Fmrffméke) z}? 0/2454 . 25 jé‘re/MZ'; I//,-/> 74m “A. m»; X; 92220:: A -—- Wm [(m _ Zhes______4«z.zémi,,/LV,,m,,,c,bv,ﬂ, 4 4021—49241}: W A 142\$:._}<=:2Z;}2\$m. ,, A, ,. .. __C%4U,H,éucmmdc&t Ayaﬁemuﬂ2“ , "mmM:@%_W4/ytéé4_mme/I£Kez__ff _€4mé€s_ __ ____d(21_ﬁ,___ M”, ,ké’K‘Zg 6/1.- _ __./2Lf(9!ZL4Z_ﬂ (42; 9M ,,vﬁﬂda{__/?2§.m6ﬁeﬂ2%es__ "'1 A! — ' e ._ ,,,,[email protected] L___/éz._____52é/723____.__ ., _ ,6 __ 7 j7,Mir/huwaccwzéade." W; ﬂ, 5&6, 49/ ﬁt. , 7, ﬂaw?! dyu/za .2 CWyMe/vf ﬂ _ £05790” e212?1 3M4" 5,7,? A .jﬁﬁ' .__...__.__.--,_________ -H-.-£/£‘_)__L_lé-] O____ -,,,_,____ _ __ if .. .---,+._____._______,.--,,- __4.__ ___.._._ , A "-2.-- _ i- _ ___ __ __ “4.7. - __.._.... _.k .7" 7-... . .__ _ .__...ﬁ.) - _ _._-n___7§{e.g-é(?7ea.méesh 4724’ L2 “Jam/émﬂff‘k (Z1. 67/64/64/ . camaﬂ¢2és , __ ._ , _, 7 _ _ ___ _ S’m c9 _ «a Edie __ BA + rat _, ._ __= _r m}! :99 35.4912“qu _3,5__>____________ ;_w_____________A}is::}:gmya 95 .75 402349 My! 634) __i ﬂymmz? ' mama : " H sggie§¢a>AL: <w2(;é¢c¢o<;Q)/axjmf i7“2%%;%£;33_/¢z\$%;mitmw n"fmm;%ézéa§a1m;'.LEAM“_UW;L:WNH.Wm_ II A 7% \9: \/ '“‘;“}?,5557553922;E;_wmw_ T imf‘“iﬂ m uW_m:::%i:%;3§:%i§;(;;:€::2iggghi_:;;fMW? .ﬁﬂ€4£___w_e__mw4_7¢c;_ W41. ez_#a_c.e__._._f___&%z__weye/2W2 ﬁnk: ___W._l_ 2%: ,,,, ,7Mazg‘zzaw/e5 :_ ___m_ 3LW¥ MM_‘f# w —m_—7MW #142 D ,________#______H_.__5_ JMAA’JWW __. W729: JeiVarszzzeZ—zé/Mﬂd‘sms ___n Ali/4L ﬁééLeJ—wchAMﬁS—ﬂ€._ eye/t me 2120/23 2%; V___ée_43érj,é;zmxeaﬂ _-, ____.n__._.-.————- A ——‘-2 .waf e0 3 en‘s/1am: fans 0/ 12 444/ L .- /.]_1;—1_> __ ll f0 74/: (cw/[3:6 12;; (25/), —/> _ ,, w _ , __ ﬁr -——--A-gﬁi———=>—<-ay;£—Mj—~/—>—=—y/4/¢L)—wst>.:{97—AL:,>,Imam—L— ___,wm_.______mm__m_,_"____~__m%7é:¢:_lﬁ;%dsmé4g€¢mzagé _*_-_%m_*___m_m?ﬁiz_fao_ W e x 8/aa_£gmﬂe_EMZQ/m em m2?” __________ﬂm_______'._[f/ _£:Sm_/>/_kc_/r_éfuﬁ___ ~_ _. Z a ﬁvﬂ m>_-=_—x—__ “MM—Ja—mm+/aw//m+u/~>ﬁ~~_ 2mm &/;;4 242% 6 4;. A=/J'Z)3J4‘),“"‘) cad/Jaw» 1 X4: 47/! #/..M Ala/(4% , ﬂoasﬂac 1/4: 2 _ eg‘gmﬁ. #HCé’Mﬁ. £411 (5) ~‘ _ a = o M.f;;&qmtg/“3mg:1446mm;=Lap __ LghrL/m%, J cw}: ago 9/47. ws’ﬂw/r 73/411 .1 j . 7 ﬂan/\$44 = “[é’w-‘L / ]M5 11H - MM)?“ 1+, j , ._ f ._ .1? , . ' ""> “cl/9+ [/94 Maw] "‘[é’HWA/ﬁkﬂ— M61“) __ "5/ arm/my. m;% _?.m.., H m 64/: gag-75\$? __ H“ ‘7 . 7., »!d,..,é’é _._v‘. . ....._ .. . . WNW _...n.‘ _ AJ/(E/Lc ,, ,, 4___ _ ears¢§4ﬁ.. __ ’::;&}éé;/ﬁ4LI:445122;%a&;%;§uﬂgzg;:2:”A WW}! __V._..4C‘-S_‘_:_A_0A/Zt ./_‘ -hwwwdﬂd.__é_7 .ngézhegfwfng_wmw__ﬁ___.______.__m_#__ﬁ__mvg_____ __________W_W____ _‘z_____ _Wy M______ mm, ____ __, ___ _. ___ W ____ _______..___Z’l/€___w:_u._:ﬂ__é( _/wﬂﬁm6{m__>____>,_mom Ze/m. MheﬂS/bﬂégg famﬁ'ﬁ'gg : AJ/(e/ze, W WW 46.424 {ﬁmm Zfﬁe.___4z{a_2ge____£524@__M___w____ __ , W7, ,, k ,,L\$A.,..__:€ﬁm_____x._.___. _.______.-_-.._...__..._ .. _ __-___.________.m_,/9m_ __ ___é{ _ _ i :__ *6: L_ _]_ _ - a 6e “ I am “a (7*) ______;;ZewéazéZW_/m¢z “Tim—73:23" f , . , —:#AAW. __._,%1_*e(/_/‘M4ua,/éq__ .. _ _____~___-__________asaqanfmf..-“ger>/{‘_%______ﬂzyx/_ __4zrmﬁe4§¢nmm , ,V g ééééo ﬁdglﬁ 4 2E pg : 7 7 2.” -‘~-2p ' ,2, H = E: + L— - Ze . ,, . if” . kw“; /” ,,,,,L,/r//{eA_g , , , , 2. = _/_._2__ a -= 4.2—. ﬂ (1* our 1") 1" car" r 7 [ya/12%.: xfazafm "Q {gay/z, z «gag/122 m if f . __ [9‘44 .e m; jag... _ _.ﬁﬁr,_#,xfz2cc_e_n___-__. Masha w)VWEWQLL(glad/4.3,_xfzarwzwﬁﬂrLL___ _zéaﬂ,ﬂ/z-._ ——\ __,W__He§2_eﬂ_s]§/ZZWW?W+*L:44a{__i;z'.‘;i:.§g>gdéaeaa§%,__;;_v_mA WA——w--‘-3‘————~———%€:nﬁm + w=mﬁ1rfféga 7- *~m————f-———-—+n— 4L!ﬂf__;§r;KJLW%;¢_7Zew€ga4/Q;L_nmﬂu ..__..,-v,ri _.. _____._.__ vagm+_ jf/fi 7“/) ____ 26 ‘2 _ _ﬁgﬁfr9_w=mg_gé(fg¢g,w mﬁ;._——-.——. ___ a” H, h (1+0 __._-_z_g_]m4___r_ _ﬁ:__ __ (,9 ' [3% dr" + omrz r “5/ ) E “H ) .__ _..-m. 7 g‘ 7 . .. _...__ _ _ _.. _ﬁwguu— ,,W/l./€/1..€ A "'i.:-1 __r_____w _____,_____.+— J wg... #— ____Fu__~_——+-——- _____~_‘————-4—— _____“_,_._._“..__——— ——~————-‘-— #_ ____,, _ .____H+————--u--—-——‘- /’/e/tce , [EX/e. {ﬂex/(maﬁa; cf u...- ~— - (ma/Wag)” > >2mﬂ/jg W) ' . 7 “us/v/e/v'c'a/ a .4234. m”! W Jeri/e11 3? 74/16/244»: iﬂr/r)” ,1‘.r:...__.r,, .. x7061) : /°‘.’::;m:__ : ,f _ ,, m, p m m m m m oﬁ/f_€___¢e(42sz/€r) _~— {6-H _:_¢S’m 7: :_ — "‘7‘": w w M 1:”? :_::Z:f2;”>“957”“E*€1““9:¢‘/*5f"” > “ —“ “ =7fdrfﬁ/kzé9yflk “w ______m, __. _____w#_: _ £522; . __ w— H—M—_ {a # alga - w <‘___z(:____<__ 33¢)-.. __c_>_;<_ , #ﬂ/w/ ﬂAmiﬂh 'll 0 7 Ezegczke. 510w (A; > =.<-_Z}; >I *' L r "ma/W-(L‘:> = (1:3 =-§—[fd+/)~------Mz _ ‘ Alf/1.. we?” 2%; 2%: eymsfaé A6291 > 7 CW." «475 e: eV-zafajcz'z 7%63._ 7, , ,, £63242»! me. egg m ﬂ .- _ ,._ﬁ 02122;.-96125Q52; "I": __Zn:m_'_7%c 45m €9ng m 69%? [Law __M_Jcm:44£f:____; girﬁcLZmaé-“ m_ ____ ._ ‘0 __=__/_' 9‘2 —+___f§.____9_.____+_ “A/AH; 8352' 7C 92: _x Egg/Misc .- 519w ' 7 ' h ' lip-f "'i'z'ZI—"I'Jﬂ '7 <9, f/ /1,—1+/> = m-(u)4--ma--szma -— -- , __...damse . ,'Q_[_fm_ m . Cmysgm 22¢. .ma{o;/:_J;;_se mg; 0/ a .__eym_m(f¢.e.__..,, éfﬂA- ,, _. :32, A . Z. <ﬁ,;2!/,&M>.___.= Ifﬂ’lﬂ) (é’JX/A?2__. I ______”.IJZ€__2ézI;_ “Ag 9‘4; VHV%;QZ_e/M;_: ncféfo/rs 0%. Z"; ._Me,____7ﬁ/e_._/zaAM 25/___%/€/_~ka£__, A/a/utroztzk’s : 7, A __, _é_ ﬂ/Z'WLQELEQW _ ‘ ___ﬁ -_ w, givugL—szm/zgﬂﬁjﬁ “A I m:;:;___ f “M”:— 4 7r aw ;:QL-€—-_ ‘ 7i [25:13.453):&t aﬂﬁ ﬁfjgrwé/ {eff/mi __ I 027!" _ ...
View Full Document

## This note was uploaded on 12/10/2011 for the course PHYS 4221 taught by Professor Cflo during the Spring '11 term at CUHK.

### Page1 / 23

Notes4 - FINITE SQUARE WELL As a last example consider the ﬁnite square well potential “V0 for —-a<x<a V“ I l o for Ix> a[1145

This preview shows document pages 1 - 23. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online