{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

122test2ans

# 122test2ans - Math 122 — Test 2 Name A N3 W ER 3 Show...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: October 20, 2011 Math 122 — Test 2 Name A N3 W ER 3 Show work for full credit. For each function, evaluate the given expression. 1. a. f(x, y) = 1/99 — x2 — yz , find f(—3,—9) b. f(x,y,z) = m/E 1n y, find f(4,e,—1) R2354,» : Jag — {—331 ~63? £01,6—, 4):-0J7? M 0. 21m ”’2 3 J7 =19, For each function, ﬁnd the partial derivatives, fx(x, y) and fy(x,y). 2. f(x, y) = (x + 2y)'l 3_ f(x,y)l= yew may» = « 6+2in 5%va «Ru/7% 7 e12. gym/1 _— K ,‘l/L _2719}*7 2 0H ﬂ 1C (W/ _ 51 QWHW 319ml (my) 3 ~ (MW? 337 (“+271 Y _ 62ml + 7 a“ : WEZW] 2‘87“? 4- 2xy 21:7 I Find the second-order partials, f”, fxy, fyx, and fyy. 4. f(x,y) = 3x2 — x3);2 + y5 QXCX 73 LE 2. Q. g‘cx’ﬂdﬂ’ﬁxy ' Mm: WV‘ V“ 7. L7CXI7I>Z ~2x37+ Syl‘l £7 70(7): :‘ beJrQOy October 20, 2011 Math 122 - Test 2 page 2 of 3 5.Find the total differential, df, of the function f(x,y)=1. : xh‘k/ x _ ‘2? 213 : ax‘zy Ax + {WW 2 clx + X&\ ’ “VAX 4" ii- : y L / x7. X X 6. Given the function f(x,y) = ye” +2x, and values x =0, Ax = dx = .1, and y =1, Ay = dy = .05. Find df using differentials. (Do not use a calculator.) At : {Ktkﬂ Ax + fyCK/ﬂ AV —_ eye—x+/&,\ Ax + e‘xAy um mﬂ 40,0 wk (Ann/>404» 0'”) , it : meadow +01 W“) : Li\(o.|) + (’I)(O.o§> : [0.15“ Find the relative extreme values of the function. 7. f(x,y)=—2x2—y2+2xy+2x+4y—-5 o:£(x,ﬂ:~’7'><+z‘/*Z :3 qX’ZY :3 .. 2 .2 , ; ’2 + 2x +Li W canal 90m: ngyﬂg, g} m; =x amhzyztl 27/:IO D : fpr 3:)“, — “Li 2- YZS ~2. {>01 £57 2 2.2-: L—{>O : (WM-23 — l . . GWX 55%;. S: Q5}S\:—¢-/<o / «£03,5—» 3 2 7— (\$.th MQXIMUM . October 20, 2011 Math 122 - Test 2 page 3 of 3 8. Use Lagrange multipliers to find the minimum value of f (x, y) = x2 + 2y2 — xy subject to the constraintx+y=24. Lab Six/V): x+y_2_t7l I M L —?J-[ Fawn :mxmam: XWWKWMW ’ 0: FX :— ZX ‘7' +2 1% 2x..>/:L£7-><~ : ‘7‘ 0: FY : HY‘K+>‘ “K 3><=§7 “R Y:%X 0: FR :. X + 7‘2‘1 X+%X:2L{ .39 §5_x:zk{=> X=lb y = gm =3 7 = Cl m‘uniMuM valve :!¥(/SJ 93 =3 232, 3 L y 9. Evaluate J I 8xydxdy. 0 ( ) 85 My “7&7 SliCty‘w‘l'OL-YVV : ist'vi‘iv 1 Vila) : 520%: E] 10. The temperaturex miles east and y miles north of a weather station is given by the function f (x, y) = 60 — 4x + 6y. Find the average temperature over the region below. 5 a 3 all/Lt} {Jiix'ﬂ (MAW ; 2': S L ((00 —’—{)s+éylecl7 K 5 Q. . t—(ijj @Ox—ZXL+QX\/\’ A7 2 o o h ‘3 : Zia/j QoD‘Z—Q‘ZL +9.27, - 0} A7 : {:8 (H’ZH’b/Xciy O - z, (“17+ WW :7: (“2.3 +5320) 0 3 ‘(95— (Lima! ...
View Full Document

{[ snackBarMessage ]}