{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ELEG413lec4

ELEG413lec4 - ELEG 413 Lecture#4 Mark Mirotznik Ph.D...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ELEG 413 Lecture #4 Mark Mirotznik, Ph.D. Associate Professor The University of Delaware Email: [email protected] General Solution Case: Time Harmonic Rectangular Coordinates ~ ~ 2 2 = + ∇ E E με ϖ ~ ~ 2 2 = + ∇ E E β με ϖ β = Wave Number ~ ~ ~ ~ 2 2 2 2 2 2 2 = + ∂ ∂ + ∂ ∂ + ∂ ∂ E z E y E x E β 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = + ∂ ∂ + ∂ ∂ + ∂ ∂ = + ∂ ∂ + ∂ ∂ + ∂ ∂ = + ∂ ∂ + ∂ ∂ + ∂ ∂ z z z z y y y y x x x x E z E y E x E E z E y E x E E z E y E x E β β β Separation of Variable Solutions 2 2 2 2 2 2 2 ) ( ) ( ) ( ) ( ) ( ) ( z y x z y x z h z h y g y g x f x f β β β β β β β + + = = + ′ ′ = + ′ ′ = + ′ ′ Solutions: z z j z z j y y j y y j x x j x x j e B e A z h e B e A y g e B e A x f β β β β β β 3 3 2 2 1 1 ) ( ) ( ) ( + = + = + =--- β purely real β purely imaginary β complex x x j x x j e B e A β β 1 1 +- Traveling and standing waves Evanesent waves x x e B e A α α 1 1 +- Exponentially modulated traveling wave x x j x x x j x e e B e e A β α β α--- + 1 1 x x j x x x j x e e B e e A β α β α 1 1 +- or or ) sin( ) cos( 1 1 x D x C x x β β + General Solution Case: Time Harmonic Cylindrical Coordinates ~ ~ 2 2 = + ∇ E E με ϖ ~ ~ 2 2 = + ∇ E E β με ϖ β = Wave Number 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = + ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ = + ∂ ∂ +- ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ = + ∂ ∂-- ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ z z z z E z E E E E E E z E E E E E E z E E E β φ ρ ρ ρ ρ ρ β φ ρ ρ φ ρ ρ ρ ρ ρ β φ ρ ρ φ ρ ρ ρ ρ ρ φ ρ φ φ φ φ ρ φ ρ ρ ρ ρ ~ ~ ) ~ ( ~ ~ 2 2 2 = + × ∇ × ∇- ⋅ ∇ ∇ = + ∇ E E E E E β β In cylindrical coordinates: Cylindrical Coordinates: Wave Types Wave Type Wave Function Traveling Waves Standing Waves Evanescent Waves...
View Full Document

{[ snackBarMessage ]}

Page1 / 36

ELEG413lec4 - ELEG 413 Lecture#4 Mark Mirotznik Ph.D...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online