qz9sp08sol - April4,2008 PHY2053Discussion...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
April 4, 2008 PHY2053 Discussion Quiz 9 (Chapter 8.6 -9.5) Name:                                   UFID: **1. (5 pts) A spherical shell with a mass of 2.00 kg and radius of 0.100 m starts from  rest at the top of a 45.0˚ incline and rolls 2.00 m down the incline without slipping.  Find the final velocity of the shell. (The moment of inertia of a spherical shell is  (2/3)MR².) Since   the   sphere   rolls   without   slipping   the   translational   velocity   is   related   to   the   angular velocity as ω  = v/R. The mechanical energy of the sphere is conserved, thus we have Mgh = (1/2)Mv²+(1/2)I ω ²  Substitute the expression for moment of inertia and angular velocity and solve for linear   velocity: MgLsin  = (1/2)Mv²+(1/2)(2/3)MR²(v/R)² θ  gLsin  = (5/6)v²  θ  v = √((6/5) gLsin ) = 4.08 m/s θ **2. (5 pts) A merry-go-round modeled as a disk with a mass of 80.0 kg and radius of 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/13/2011 for the course PHY 2053 taught by Professor Buchler during the Fall '06 term at University of Florida.

Page1 / 2

qz9sp08sol - April4,2008 PHY2053Discussion...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online