HW2_2011(1) - BME 339 CHE 339/BIO 335 Fall 2011 Homework#2...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: BME 339/ CHE 339/BIO 335 Fall 2011 Homework #2 Assigned: September 8, 2011 Due: Thursday, September 15, 2011 1. From Kargi and Shuler. 2. Consider a continuous, aerobic bacterial culture in a chemostat with sterile feed. Three different dilution rates D are tested for a glucose feed concentration Sf = 10 mM, and the biomass concentration x and glucose concentration S in the exit stream are measured. The results are as follows: D (h‐1) 0.05 0.5 5 X (g/L) 0.248 0.208 0 S (mM) 0.067 1.667 10 a. Estimate the glucose yield coefficient YX/S (g biomass/mole glucose). b. Assuming Monod growth kinetics, estimate the maximum specific growth rate μmax (h‐1) and the Monod constant KS (mM). 3. In the production of bacterial toxins the growth rate depends on the concentration of the toxin product P and the concentration of the limiting substrate S. In some cases (for low dilution rates), the following equations hold: K S μμ K P K ,where Kp, Ks are constants (units g product/ liter and g substrate/liter, respectively). The rate of product formation (g product/ liter/ hr) is: RP = A .X ,where A is a constant (g product/ g cells/hr). Derive an expression for the steady state cell concentration X, product concentration P and substrate S in a continuous culture as a function of dilution rate and the known parameters µmax, A, KP, KS, and Sin. Assume Pin=Xin=0 4. In a two stage chemostat system the volumes of the first and second reactors are V1=500 L and V2=300 L, respectively. The first tank is used for biomass production and the second reactor is for secondary metabolite production. The flow rate, F=100 L/hr and the glucose concentration in the feed is Sin=5.0 g/L. The second tank is kept at a temperature above the maximum temperature for cell growth so that µ=0 in the second tank. Using the following constants determine the concentration of product in the effluent of the second tank. Sin = 5.0 g/L YX/S= 0.4 g cell/g substrate KS = 0.1 g/L µmax= 0.3 hr‐1 RP = 0.02 (g product/g cells hr) × X ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern