Chapter 3 - CHAPTER3 GasEquationsofState...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 3  Gas Equations of State Gas Equations of State Single Component Ideal Gas  Behavior: What is an ideal gas? Review the following single  component ideal gas laws: 1. Boyle’s Law 2. Charles’ Law (Gay-Lussac’s  Law) 3 - 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
3. Avogadro’s Law 4. Equation of State for an Ideal  Gas 3 - 2
Background image of page 2
Ideal Gas This is a hypothetical gas that has  the following properties: 1. The volume occupied by the gas  molecules is negligible compared  to the total volume of the fluid. 2. There are no attractive or  repulsive forces between the  molecules, and between the  molecules and the walls of the  container. 3 - 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
3. All collisions of the molecules are  perfectly elastic.  This means  there is no loss of internal energy  upon collision. Ideal Gas (continued) Boyle’s Law: At a constant temperature, the volume of a fixed  mass of gas is inversely proportional to the  pressure.  V  α   1 P      (1) or  PV  = a constant       (2) 3 - 4
Background image of page 4
or  P 1 V 1   = P 2 V 2       (3) 3 - 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Ideal Gas (continued) Charles’ Law: At a constant pressure, the volume of a fixed  mass of gas is directly  proportional to the  absolute temperature.  V  α  T     (4)     V T    =   a constant     (5) or     V 1 T 1    =    V 2 T 2     (6) 3 - 6
Background image of page 6
Ideal Gas (continued) Avogadro’s Law: At the same temperature and pressure, equal  volumes of all ideal gases contain the same  number of molecules. Alternatively, One mole or one molecular weight of all ideal  gases will occupy the same volume at the same  temperature and pressure. 3 - 7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Ideal Gas (continued) Avogadro’s Law continued: At 0 ˚C and 1 atmosphere pressure, 1  molecular weight in grams (i.e., 1 g  mole) of a gas occupies 22.4 liters. or At 60 ˚F and 14.7 psia pressure, 1  molecular weight in pounds (i.e., 1 lb  mole) of a gas occupies 379.4  standard cubic feet. 3 - 8
Background image of page 8
Standard   conditions   in   the   natural  gas industry are: P = 14.7 psia T = 60 ˚F The Mole, The Pound Mole and The  Gram Mole The Mole:   This is the quantity of a substance  equal to its molecular weight. The Pound Mole:  3 - 9
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the quantity of a substance  equal to its molecular weight in  pounds. The Gram Mole:   This is the quantity of a substance  equal to its molecular weight in  grams. 3 - 10
Background image of page 10
Ideal Gas (continued) Equation of State for an Ideal Gas: This is obtained by combining Boyle’ s and  Charles’ Laws:  For a fixed mass (or moles) of ideal gas,     PV T   =  a constant   (7) or     P 1 V 1 T 1   =   P 2 V 2 T 2    (8) where P = absolute pressure V = total volume of ideal gas T = absolute temperature given  by 3 - 11
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
° Kelvin =   ° C + 273 or ° Rankine =   ° F + 460  3 - 12
Background image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 62

Chapter 3 - CHAPTER3 GasEquationsofState...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online