{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

6_ch 15 Mechanical Design budynas_SM_ch15

# 6_ch 15 Mechanical Design budynas_SM_ch15 - K θ = 1 Y x =...

This preview shows page 1. Sign up to view the full content.

384 Solutions Manual Instructor’s Solution Manual to Accompany Mechanical Engineering Design The constant 1000 expresses W t in kN W t P = 524 . 1 190 2 25(88)(0 . 066) 1000(1)(1 . 663)(1 . 0035)(0 . 56)(2) = 0 . 591 kN Eq. (13-36): H 3 = π dn W t 60 000 = π (88)1800(0 . 591) 60 000 = 4 . 90 kW Wear of Gear σ H lim = 585 . 9 MPa ( σ H ) G = 585 . 9(1 . 0054) 1(1)(1 . 118) = 526 . 9 MPa W t G = W t P ( σ H ) G ( σ H ) P = 0 . 591 526 . 9 524 . 1 = 0 . 594 kN H 4 = π (88)1800(0 . 594) 60 000 = 4 . 93 kW Thus in wear, the pinion controls the power rating; H = 4 . 90 kW Ans. We will rate the gear set after solving Prob. 15-6. 15-6 Refer to Prob. 15-5 for terms not defined below. Bending of Pinion Eq. (15-15): ( K L ) P = ( Y NT ) P = 1 . 6831(10 9 ) 0 . 0323 = 0 . 862 ( K L ) G = ( Y NT ) G = 1 . 6831[10 9 (22 / 24)] 0 . 0323 = 0 . 864 Fig. 15-13: σ F lim = 0 . 30 H B + 14 . 48 = 0 . 30(180) + 14 . 48 = 68 . 5 MPa Eq. (15-13): K x = Y β = 1 From Prob. 15-5: Y Z = 1 . 25, v et = 8 . 29 m/s K A = 1, K v = 1 . 663, K θ
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: K θ = 1, Y x = . 52, K H β = 1 . 0035, Y J 1 = . 23 Eq. (5-4): ( σ F ) P = σ F lim Y NT S F K θ Y Z = 68 . 5(0 . 862) 1(1)(1 . 25) = 47 . 2 MPa Eq. (5-3): W t p = ( σ F ) P bm et Y β Y J 1 1000 K A K v Y x K H β = 47 . 2(25)(4)(1)(0 . 23) 1000(1)(1 . 663)(0 . 52)(1 . 0035) = 1 . 25 kN H 1 = π (88)1800(1 . 25) 60 000 = 10 . 37 kW Bending of Gear σ F lim = 68 . 5 MPa ( σ F ) G = 68 . 5(0 . 864) 1(1)(1 . 25) = 47 . 3 MPa W t G = 47 . 3(25)(4)(1)(0 . 205) 1000(1)(1 . 663)(0 . 52)(1 . 0035) = 1 . 12 kN H 2 = π (88)1800(1 . 12) 60 000 = 9 . 29 kW...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online