20_ch 04 Mechanical Design budynas_SM_ch04

# 20_ch 04 Mechanical Design budynas_SM_ch04 -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: budynas_SM_ch04.qxd 11/28/2006 20:50 FIRST PAGES Page 89 89 Chapter 4 yB = 1 10(106 )(0.1667) = −0.045 87 in 4-41 Ans . π (1.54 ) = 0.2485 in4 64 I1 = I2 = 200 (12) = 1200 lbf 2 R1 = For 0 ≤ x ≤ 16 in, M = 1200x − M 1200x − 4800 = I I1 1 1 − I1 I2 = 4829x − 13 204 x − 4 E [−26.67(183 ) + 40(18 − 6) 3 + 552.58(18)] 0 π4 (2 ) = 0.7854 in4 64 MI 200 x −4 2 x −4 2 1 1 1 − I1 I2 − 1200 0 − 3301.1 x − 4 dy = 2414.5x 2 − 13 204 x − 4 dx x − 1651 x − 4 1 x −4 − 127.32 x − 4 3 − 100 x −4 I2 2 2 − 42.44 x − 4 1 2 + C1 dy = 0 at x = 10 in dx 0 = 2414.5(102 ) − 13 204(10 − 4) 1 − 1651(10 − 4) 2 − 42.44(10 − 4) 3 + C1 C1 = −9.362(104 ) Boundary Condition: E y = 804.83x 3 − 6602 x − 4 2 − 550.3 x − 4 3 − 10.61 x − 4 4 − 9.362(104 ) x + C2 y=0 at x = 0 ⇒ C2 = 0 For 0 ≤ x ≤ 16 in y= 1 [804.83x 3 − 6602 x − 4 2 − 550.3 x − 4 30(106 ) − 10.61 x − 4 4 − 9.362(104 ) x ] Ans. 3 at x = 10 in y |x =10 = 1 [804.83(103 ) − 6602(10 − 4) 2 − 550.3(10 − 4) 3 30(106 ) − 10.61(10 − 4) 4 − 9.362(104 )(10)] = −0.016 72 in Ans. 4-42 q=F x −1 − Fl x −2 − F x −l −1 Integrations produce V=F x 0 − Fl x −1 M=F x 1 − Fl x 0 − F x −l − F x −l 1 0 = F x − Fl ...
View Full Document

## This note was uploaded on 12/13/2011 for the course EML 3013 taught by Professor Shingley during the Fall '11 term at UNF.

Ask a homework question - tutors are online