{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

26_ch 10 Mechanical Design budynas_SM_ch10

26_ch 10 Mechanical Design budynas_SM_ch10 - M for the...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
286 Solutions Manual Instructor’s Solution Manual to Accompany Mechanical Engineering Design 10-31 For the hook, M = F R sin θ , M /∂ F = R sin θ δ F = 1 E I π/ 2 0 F R 2 sin 2 R d θ = π 2 P R 3 E I The total deflection of the body and the two hooks δ = 8 FD 3 N b d 4 G + 2 π 2 F R 3 E I = 8 FD 3 N b d 4 G + π F ( D / 2) 3 E ( π/ 64)( d 4 ) = 8 FD 3 d 4 G N b + G E = 8 FD 3 N a d 4 G N a = N b + G E QED 10-32 Table 10-4 for A227: A = 140 kpsi · in m , m = 0 . 190 Table 10-5: E = 28 . 5(10 6 ) psi S ut = 140 (0 . 162) 0 . 190 = 197 . 8 kpsi Eq. (10-57): S y = σ all = 0 . 78(197 . 8) = 154 . 3 kpsi D = 1 . 25 0 . 162 = 1 . 088 in C = D / d = 1 . 088 / 0 . 162 = 6 . 72 K i = 4 C 2 C 1 4 C ( C 1) = 4(6 . 72) 2 6 . 72 1 4(6 . 72)(6 . 72 1) = 1 . 125 From σ = K i 32 M π d 3
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M for the yield condition, M y = π d 3 S y 32 K i = π (0 . 162) 3 (154 300) 32(1 . 125) = 57 . 2 lbf · in Count the turns when M = N = 2 . 5 − M y d 4 E / (10 . 8 DN ) from which N = 2 . 5 1 + [10 . 8 DM y / ( d 4 E )] = 2 . 5 1 + { [10 . 8(1 . 088)(57 . 2)] / [(0 . 162) 4 (28 . 5)(10 6 )] } = 2 . 417 turns F ± R ± D ± 2...
View Full Document

{[ snackBarMessage ]}