39_ch 03 Mechanical Design budynas_SM_ch03

39_ch 03 Mechanical Design budynas_SM_ch03 - = 92 . 8 ( /...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
52 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design σ max = 7885 296 2 + ± ² 7885 296 2 ³ 2 + 8217 2 = 12 845 psi Ans. 3-47 ´ µ M B z =− 5 . 6(362 . 8) + 1 . 3(92 . 8) + 3 A y = 0 A y = 637 . 0 lbf ´ µ M A z =− 2 . 6(362 . 8) + 1 . 3(92 . 8) + 3 B y = 0 B y = 274 . 2 lbf ´ µ M B y = 0 A z = 5 . 6 3 808 = 1508 . 3 lbf ´ µ M A y = 0 B z = 2 . 6 3 808 = 700 . 3 lbf Torsion: T = 808(1 . 3) = 1050 lbf · in τ = 16(1050) π (1 3 ) = 5348 psi Bending: M p = 92 . 8(1 . 3) = 120 . 6 lbf · in M A = 3 · B 2 y + B 2 z = 3 ¸ 274 . 2 2 + 700 . 3 2 = 2256 lbf · in = M max σ b 32(2256) π (1 3 ) 22 980 psi Axial:
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = 92 . 8 ( / 4)1 2 = 120 psi max = 22980 120 2 2 + 5348 2 = 12 730 psi Ans. max = 22980 120 2 + 22980 120 2 2 + 5348 2 = 24 049 psi Ans. 808 lbf 362.8 lbf 92.8 lbf 3 in 2.6 in 92.8 lbf 1.3 in x y E B y A y B A B z A z P z tens . inAP tens...
View Full Document

Ask a homework question - tutors are online