HW6_soln

HW6_soln - PHY 5667 Problem Set no. 6 solution Problem 1 1...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PHY 5667 Problem Set no. 6 solution Problem 1 1 φ(x + a) = φ(x) + aµ ∂µ φ(x) + aµ aν ∂µ ∂ν φ(x) + . . . 2 = exp[aµ ∂µ ]φ(x) = exp[iaµ Tµ ]φ(x) (Taylor expansion) (by definition) Comparing the second and the third line gives Tµ = −i∂µ Problem 2 In agreement with the transformation of 4-vectors x, 4-momenta k transform under a Lorentz boost in x1 direction as: k ′0 k ′1 k ′2 k ′3 = k 0 cosh η + k 1 sinh η = k 0 sinh η + k 1 cosh η = k2 = k3 Thus, k ′0 δ (k ′ − q ′ ) = k ′0 δ (k ′1 − q ′1 )δ (k ′2 − q ′2 )δ (k ′3 − q ′3 ) = k ′0 δ (k ′1 − q ′1 )δ (k 2 − q 2 )δ (k 3 − q 3 ) 1 From δ (f (x)) = |f ′ (x)|−1 δ (x), one can derive directly that δ (f (x) − f (a)) = |f ′ (x)|−1 δ (x − a), so we can rewrite δ (k ′1 − q ′1 ) = = ∂ ′1 k ∂k 1 −1 δ (k 1 − q 1 ) ∂ k 1 cosh η + k 0 sinh η ∂k 1 ∂k 0 = cosh η + 1 sinh η ∂k = cosh η + −1 δ (k 1 − q 1 ) −1 k1 sinh η k0 δ (k 1 − q 1 ) −1 δ (k 1 − q 1 ) 1 0 k where in the last line we have used ∂k1 = k0 which follows directly from ∂k k 0 = (k 1 )2 + (k 2 )2 + (k 3 )2 − m2 . So we end up with k ′0 δ (k ′ − q′) =k ′0 −1 k1 cosh η + 0 sinh η k δ (k 2 − q 2 )δ (k 3 − q 3 ) k1 k1 sinh η cosh η + 0 sinh η k0 k 0 1 1 2 2 3 3 = k δ (k − q )δ (k − q )δ (k − q ) −1 = k 0 cosh η + δ (k 1 − q 1 )δ (k 2 − q 2 )δ (k 3 − q 3 ) = k 0 δ (k − q ) Problem 3 The Heisenberg equation of motion for any operator A reads i∂0 A = [A, H ]. Here we consider the Hamiltonian H= dx H = dx m2 2 12 1 Π + (∇φ)(∇φ) + φ. 2 2 2 2 Using the commutation relation specified in the problem, we find that the Heisenberg equation of motion for φ(t, x) gives i∂0 φ(t, x) = = = 1 1 m2 2 dy φ(t, x), (Π(t, y )) + (∇y φ(t, y ))(∇y φ(t, y )) + (φ(t, y ))2 2 2 2 1 1 dy [φ(t, x), Π(t, y )] Π(t, y ) + Π(t, y ) [φ(t, x), Π(t, y )] 2 2 dy iδ (x − y )Π(t, y ) = iΠ(t, x) Therefore, we find Π(t, x) = ∂0 φ(t, x) The Heisenberg equation of motion for Π(t, x) gives i∂0 Π(t, x) = 1 m2 1 (Π(t, y ))2 + (∇y φ(t, y ))(∇y φ(t, y )) + (φ(t, y ))2 2 2 2 1 1 [Π(t, x), (∇y φ(t, y )](∇y φ(t, y )) + (∇y φ(t, y ))[Π(t, x), (∇y φ(t, y )] 2 2 2 m m2 + [Π(t, x), φ(t, y )] φ(t, y ) + φ(t, y ) [Π(t, x), φ(t, y)] 2 2 1 1 [Π(t, x), φ(t, y] (−∇y ∇y φ(t, y )) + (−∇y ∇y φ(t, y )) [Π(t, x), φ(t, y] 2 2 2 m2 m [Π(t, x), φ(t, y )] φ(t, y ) + φ(t, y ) [Π(t, x), φ(t, y)] + 2 2 dy Π(t, x), = dy = dy = dy (−i)δ (x − y ) · −∇y ∇y + m2 φ(t, y ) = i ∇x ∇x − m2 φ(t, x) = i ∂i ∂i − m2 φ(t, x) where the sum over i = 1, 2, 3 is left implicit. Combining this with the previous result, we find ∂0 Π = ∂0 ∂0 φ = ∂i ∂i − m2 φ ∂0 ∂0 − ∂i ∂i + m2 φ = 0 ∂µ ∂ µ + m2 φ = 0 3 Problem 4 We are given the action L ∞ S= dt 1 m2 2 κ 3 λ 4 (∂µ φ)(∂ µ φ) − φ− φ− φ + 2 2 3 4 dx 0 −∞ ∞ dt −∞ M2 φ (t, L) 2 from which we get the equations of motions by setting δ S to zero. L ∞ δS = ∞ µ dt 2 2 3 dx (∂µ δφ)(∂ φ) − m φ δφ − κφ δφ − λφ δφ + 0 −∞ dt M φ δφ(t, L) −∞ Now use that (∂µ δφ)(∂ µ φ) = (∂t δφ)(∂t φ) − (∂x δφ)(∂x φ) and ∞ ∞ dt(∂t δφ)(∂t φ) = δφ(∂t φ)|∞ − −∞ dt δφ(∂t ∂t φ) −∞ −∞ ∞ =− dt δφ(∂t ∂t φ) since δφ(t = ±∞) = 0 −∞ L dx (∂x δφ)(∂x φ) = δφ(∂x φ)|L 0 L − 0 dx δφ(∂x ∂x φ) 0 L = (∂x φ)|x=L − (∂x φ)|x=0 − dx δφ(∂x ∂x φ) 0 to show that L ∞ δS = dx δφ −∂t ∂t φ + ∂x ∂x φ − m2 φ − κφ2 − λφ3 dt 0 −∞ ∞ + ∞ dt δφ [M − (∂x φ)] |x=L + −∞ dt δφ(∂x φ)|x=0 −∞ (a) Vanishing of the boundary localized terms for arbitrary δφ requires (BC1) (BC2) ∂x φ|x=0 = 0 [M − ∂x ]φ|x=L = 0 (b) With the boundary conditions now imposed, vanishing of δ S for arbitrary δφ in the region 0 < x < L gives: (EOM) ∂t ∂t φ − ∂x ∂x φ + m2 φ + κφ2 + λφ3 = 0. 4 ...
View Full Document

This note was uploaded on 12/14/2011 for the course PHY 5667 taught by Professor Okui during the Fall '10 term at FSU.

Ask a homework question - tutors are online