HW8_soln

HW8_soln - PHY 5667 Problem Set no. 8 solution Problem 1 In...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PHY 5667 Problem Set no. 8 solution Problem 1 In a frame k = (E, 0, 0, p) the solutions for right-handed spinors read √ E+p √0 √0 uk,1 = , vk,1 = , , uk,2 = E−p E−p 0 vk,2 = √ − E+p 0 (i) = √ E+p 0 = E+p 0 2 s=1 uk,s u† k,s ( 0 0 0 0 + = E · 1 + p · σ3 = k · σ ¯ 2 = √0 E−p = s=1 vk,s v † k,s 0 0 0 E−p √0 E−p E + p, 0) + (0, 0 E−p 0 E+p E+p 0 = √ − E+p 0 E − p) + + (0, 0 0 E − p) 0 E−p (− E + p, 0) E+p 0 0 E−p = = E · 1 + p · σ3 = k · σ ¯ (ii) The transformation that brings k = (E, 0, 0, p) to k ′ = (E, p sin θ cos φ, p sin θ sin φ, p cos θ) is a rotation by −θ around the y -axis followed by a rotation by −φ around the ˆ z -axis. This means that the spinors get rotated to ˆ uk′ ,s = e−iφ σ3 2 e −i θ σ2 2 and similar for vk′ ,s = e−iφ uk,s σ3 2 e −i θ σ2 2 vk,s This means 2 s=1 uk′ ,s u† ′ ,s = e−iφ k σ3 2 e −i θ s=1 2 3 =e 2 σ2 2 −i φ σ 2 e −i θ σ 2 uk,s u† eiφ k,s σ3 2 e iθ (E · 1 + p · σ 3 )eiθ = E · 1 + p · e −i φ = E · 1 + p · e −i φ 2 σ3 2 σ2 2 σ2 2 e iφ σ3 2 σ3 2 e−iθσ eiφ σ3 2 (cos θ − i sin θσ 2 )eiφ σ3 = E · 1 + p · (cos θ − i sin θe−iφσ3 σ 2 )σ 3 σ3 2 σ3 = E · 1 + p · (cos θ − i sin θ(cos φ − i sin φσ 3 )σ 2 )σ 3 1 (1) . = E · 1 + p · cos θσ 3 − p sin θ cos φ iσ 2 σ 3 −p sin θ sin φ σ 3 σ 2 σ 3 −σ 1 1 −σ 2 3 2 = E · 1 + p · sin θ cos φ · σ + p sin θ sin φ · σ + p cos θ · σ = k′ · σ ¯ It works exactly the same way for vk,s , which means that the identity 2 2 uk,s u† k,s s=1 = s=1 vk,s v † = k · σ ¯ k,s holds independent of the frame of reference. Problem 2 In a frame k = (E, 0, 0, p) the solutions for left-handed spinors read √ E−p √0 √0 , uk,2 = uk,1 = , vk,1 = , 0 E+p E+p vk,2 = √ − E−p 0 . (i) = √ E−p 0 = 0m 00 2 T uk,s vk,s s=1 0 0 −m 0 + = imσ2 √0 E+p E + p) + (0, = (− E − p, 0) 0 m −m 0 This property is valid in all frames, which can be shown by performing the same rotation as in problem (1) (rotation transformation is the same for leftand right-handed spinors) 2 T uk′ ,s vk′ ,s = e−iφ σ3 2 e −i θ σ2 2 s=1 2 T uk,s vk,s eiθ σ2 2 s=1 2 3 =e −i φ σ 2 = e −i φ σ3 2 e −i θ σ 2 e −i θ σ2 2 imσ2 eiθ e iθ σ2 2 e iφ σ2 2 σ3 2 e −i φ 2 σ3 2 because σ 2T = −σ 2 and σ 3T = σ 3 σ3 2 imσ2 = imσ2 e −i φ b/c σ 2 commutes w/ itself & anticommutes w/ σ 3 (ii) = √ E−p 0 = E−p 0 2 s=1 uk,s u† k,s ( √0 E+p E − p, 0) + (0, E + p) 0 E+p =k·σ 2 s=1 † vk,s vk,s = = √0 E+p E−p 0 (0, E + p) + √ − E−p 0 (− E − p, 0) 0 E+p =k·σ The proof that this independent of the frame of reference goes through exactly as in problem 1. Problem 3 In a frame k = (E, 0, 0, p) the solutions for √ E−p √0 E+p 0 uk,1 = √ E + p , uk,2 = √0 E−p 0 (i) 2 uk,s u† s=1 k,s Dirac spinors read √ E−p , v = √0 k,1 − E+p 0 √ E−p 0 = √ E + p ( E − p, 0, E + p, 0) + 0 0 0 E−p 0 m 0 0 0 0 0 0 E+p + = m 0 0 E+p 0 0 0 m 0 0 0 0 = k·σ m1 2 m1 2 k·σ ¯ = kµ · 0 σµ ¯ σµ 0 , √0 E+p (0, √0 E−p 0 0 0 m 0 0 0 E−p + m1 0 12 vk,2 E + p, 0, 12 0 = (kµ γ µ + m1)γ 0 We must show that this result in fact holds in all frames. Therefore, we need to perform rotations of the Dirac spinors (which are 4-vectors, thus we need 4 × 4transformation matrices. Knowing that a Dirac spinor consists of a left-handed 3 √0 E+p . = √0 − E−p E − p) and a right-handed Weyl spinor and that these both transform under rotations as specified in (1), we get the transformation of Dirac spinors as uk′ ,s = e−iφ σ3 2 e −i θ 0 1 1 0 σ2 2 and similar for vk′ ,s = e−iφ uk,s σ3 2 e −i θ 1 0 σ2 2 0 1 vk,s (2) From this point on, it is straighforward to show that this holds independent of the frame of reference. (ii) √ E−p √0 2 0 E+p (0, E + p, 0, − E − p) vk,s v † = √ − E + p ( E − p, 0, − E + p, 0) + k,s √0 s=1 − E−p 0 E − p 0 −m 0 0 0 0 0 0 0 0 0 0 E + p 0 −m = −m 0 E + p 0 + 0 0 0 0 0 0 0 0 0 −m 0 E − p = k·σ − m1 2 − m1 2 k·σ ¯ = kµ · 0 σµ ¯ σµ 0 − m1 0 12 12 0 = (kµ γ µ − m1)γ 0 Again using the transformations (2), it is straighforward to show that this holds independent of the frame of reference. Problem 4 {ψα (x), ψβ (y )} = = dk dk ′ √ (2π )3 2 k 0 k ′0 dk dk ′ √ (2π )3 2 k 0 k ′0 2 ′ ′ uk,sα ak,s e−ik·x + vk,sα a† eik·x , uk′ ,s′ β ak′ ,s′ e−ik ·y + vk′ ,s′ β a† ′ ′ eik ·y ¯ ¯ k,s s,s′ =1 k ,s 2 ′ s,s′ =1 ′ uk,sα uk′ ,s′ β e−i(k·x−k ·y) {ak,s , ak′ ,s′ } + uk,sα vk′ ,s′ β e−i(k·x−k ·y) {ak,s , a† ′ ′ } ¯ k ,s ′ ′ +vk,sα uk′ ,s′ β ei(k·x−k ·y) {a† , ak′ ,s′ } + vk,sα vk′ ,s′ β ei(k·x+k ·y) {a† , a† ′ ,s′ } ¯k,s ¯k,s ¯k =0 k0 ,k′0 fixed since all the anticommutators vanish 4 k0 ,k′0 fixed † ψα (x), ψβ (y ) = = dk dk ′ √ (2π )3 2 k 0 k ′0 dk dk ′ √ (2π )3 2 k 0 k ′0 2 ′ ′ ∗ uk,sα ak,s e−ik·x + vk,sα a† eik·x , u∗′ ,s′ β a† ′ ′ eik ·y + vk′ ,s′ β ak′ ,s′ e−ik ·y ¯ ¯ k k,s s,s′ =1 k ,s 2 ′ s,s′ =1 ′ ∗ uk,sα u∗′ ,s′ β e−i(k·x−k ·y) {ak,s , a† ′ ′ } + uk,sα vk′ ,s′ β e−i(k·x+k ·y) {ak,s , ak′ ,s′ } ¯ k k ,s ′ ′ ∗ +vk,sα u∗′ ,s′ β ei(k·x+k ·y) {a† , a† ′ ′ } + vk,sα vk′ ,s′ β ei(k·x−k ·y) {a† , ak′ ,s′ } ¯ ¯ ¯ k k,s = = dk (2π )3 2k 0 dk (2π )3 2k 0 k0 ,k′0 fixed k ,s k,s k0 ,k′0 fixed 2 s=1 (uk,s u† )αβ · e−ik·(x−y) − (vk,s v † )αβ · eik·(x−y) k,s k,s k0 fixed / / ((k + m1)γ 0 )αβ e−ik·(x−y) − ((k − m1)γ 0 )αβ · eik·(x−y) k0 fixed where we changed k in the exponent to k since (x0 − y 0 ) = 0 anyway now in the second term replace k → −k = dk (2π )3 2k 0 ((k0 γ 0 − ki γ i + m1)γ 0 )αβ e−ik·(x−y) + ((k0 γ 0 + ki γ i − m1)γ 0 )αβ e−ik·(x−y) dk 2k0 ((γ 0 )2 )αβ e−ik·(x−y) (2π )3 2k 0 = δαβ δ (x − y) = k0 fixed where in the last line we used (γ 0 )2 = 1. 5 k0 fixed Problem 5 (i) † † 0|ψRα (x)ψRβ (y )|0 † † − 0|ψRβ (y )ψRα (x)|0 † † 0|T ψRα (x)ψRβ (y ) |0 = if x0 > y 0 if x0 < y 0 Let’s start with the x0 > y 0 case: †(a† ) †(a) ψRβ (y ) + ψRβ (y ) |0 †(a† ) †(a) = 0|ψRα (x)ψRβ (y )|0 dk dk ′ √ (2π )3/2 2k 0 2k ′0 = †(a† ) †(a) † † 0|ψRα (x)ψRβ (y )|0 = 0| ψRα (x) + ψRα (x) 2 ′ ∗ (vk,s )α (u∗′ ,s′ )β 0|ak,s a† ′ ,s′ |0 e−ik·x eik ·y k k s,s′ =1 δs,s′ δ (k−k′ ) dk (2π )3/2 2k 0 = = −im(σ2 )αβ 2 s=1 ∗ (vk,s )α (u∗ )β · e−ik·(x−y) k,s dk e −i k · (x −y ) (2π )3/2 2k 0 where in the last step we used 2 2 2 ∗ (vk,s u† )αβ = ∗ (vk,s )α (u∗ )β = k,s s=1 s=1 k,s s=1 T ((uk,s vk,s )† )αβ = ((miσ2 )† )αβ = −im(σ2 )αβ . For y 0 > x0 : †(a† ) †(a) † † − 0|ψRα (y )ψRβ (x)|0 = − 0| ψRβ (y ) + ψRβ (y ) †(a) †(a† ) ψRα (x) + ψRα (x) |0 †(a† ) †(a) = − 0|ψRβ (y )ψRα (x)|0 = im(σ2 )βα dk e −i k · (y −x ) (2π )3/2 2k 0 = −im(σ2 )αβ dk e −i k · (y −x ) (2π )3/2 2k 0 We got from the second to the third line by realizing that †(a) †(a† ) 0|ψRβ (y )ψRα (x)|0 = †(a) †(a† ) 0|ψRα (x)ψRβ (y )|0 , exchanging α ↔ β and x ↔ y . Finally using what we showed in class when we talked about scalar fields dk −i k · (x −y ) (2π )3 2k0 e dk −i k · (y −x ) (2π )3 2k0 e d4 k i e −i k · (x −y ) = (2π )4 k 2 − m2 + iε 6 if x0 > y 0 if x0 < y 0 (3) we find d4 k i e −i k · (x −y ) 4 k 2 − m2 + iε (2π ) † † 0|T ψRα (x)ψRβ (y ) |0 = −im(σ2 )αβ † 0|ψRα (x)ψRβ (y )|0 † − 0|ψRβ (y )ψRα (x)|0 † 0|T ψRα (x)ψRβ (y ) |0 = if x0 > y 0 if x0 < y 0 Let’s start with the x0 > y 0 case: (a† ) (a) ψRβ (y ) + ψRβ (y ) |0 †(a† ) (a) = 0|ψRα (x)ψRβ (y )|0 = †(a† ) †(a) † 0|ψRα (x)ψRβ (y )|0 = 0| ψRα (x) + ψRα (x) dk dk ′ √ (2π )3/2 2k 0 2k ′0 2 ′ (uk,s )α (u∗′ ,s′ )β 0|ak,s a† ′ ′ |0 e−ik·x eik ·y k k ,s s,s′ =1 δs,s′ δ (k−k′ ) = = dk (2π )3/2 2k 0 2 s=1 (uk,s )α (u∗ )β · e−ik·(x−y) k,s dk (k · σ )αβ e−ik·(x−y) ¯ (2π )3/2 2k 0 where in the last step we used 2 2 (uk,s )α (u∗ )β = k,s s=1 0 s=1 (uk,s u† ′ )αβ = (k · σ )αβ . ¯ k,s 0 For y > x : †(a† ) †(a) (a) † − 0|ψRα (y )ψRβ (x)|0 = − 0| ψRβ (y ) + ψRβ (y ) (a† ) †(a) = − 0|ψRβ (y )ψRα (x)|0 =− (a† ) ψRα (x) + ψRα (x) |0 dk dk ′ √ (2π )3/2 2k 0 2k ′0 2 ′ ∗ (vk,s )β (vk′ ,s′ )α 0|ak,s a† ′ ′ |0 e−ik·y eik ·x s,s′ =1 k ,s δs,s′ δ (k−k′ ) 2 =− dk (2π )3/2 2k 0 =− dk (k · σ )αβ e−ik·(y−x) ¯ (2π )3/2 2k 0 s=1 ∗ (vk,s )β (vk,s )α · e−ik·(y−x) where in the last step we used 2 2 ∗ (vk,s )β (vk,s )α = s=1 s=1 (vk,s v † )αβ = (k · σ )αβ . ¯ 7 k,s Since there is a k under the integral, we cannot use (3) directly. However by differentiation w.r.t. (x − y ), we can derive: i∂µ d4 k i e −i k · (x −y ) = (2π )4 k 2 − m2 + iε i∂µ dk e−ik·(x−y) + θ(y 0 − x0 ) (2π )3 2k 0 θ(x0 − y 0 ) d4 k ikµ e −i k · (x −y ) = (2π )4 k 2 − m2 + iε dk kµ e−ik·(x−y) + θ(y 0 − x0 ) (2π )3 2k 0 θ(x0 − y 0 ) + δ (x0 − y 0 ) dk e−ik·(x−y) − δ (x0 − y 0 ) (2π )3 2k 0 dk e −i k · (y −x ) (2π )3 2k 0 dk (−kµ )e−ik·(y−x) (2π )3 2k 0 dk e −i k · (y −x ) (2π )3 2k 0 The last line, stemming from ∂0 acting on the θ-functions can be rewritten as dk e−ik·(x−y) − δ (x0 − y 0 ) (2π )3 2k 0 δ (x0 − y 0 ) dk e i k · (x −y ) (2π )3 2k 0 = δ (x0 − y 0 ) 0 0 0 dk e−ik (x −y ) eik·(x−y) − (2π )3 2k 0 = δ (x0 − y 0 ) dk eik·(x−y) − (2π )3 2k 0 0 0 0 dk e i k (x − y ) e − i k · (x − y ) (2π )3 2k 0 dk e−ik·(x−y) (2π )3 2k 0 now take k → −k in the second term (this does not affect k 0 = = δ (x0 − y 0 ) dk eik·(x−y) − (2π )3 2k 0 |k |2 + m2 ) dk e i k · (x − y ) (2π )3 2k 0 =0 d4 k ikµ e −i k · (x −y ) (2π )4 k 2 − m2 + iε = θ(x0 − y 0 ) = dk kµ e−ik·(x−y) + θ(y 0 − x0 ) (2π )3 2k 0 dk −i k · (x −y ) (2π )3 2k0 (kµ )e dk −i k · (y −x ) (2π )3 2k0 (−kµ )e if x0 > y 0 if x0 < y 0 8 dk (−kµ )e−ik·(y−x) (2π )3 2k 0 (4) Using (4) we can combine the results for x0 > y 0 and y 0 > x0 to ¯ d4 k i(k · σ )αβ −ik·(x−y) e 4 k 2 − m2 + iε (2π ) † 0|T ψRα (x)ψRβ (y ) |0 = T (ii) Since 2=1 uk,s vk,s = imσ2 for left-handed as well as for right-handed Mas jorana spinors, it follows, 0|T {ψLα (x)ψLβ (y )} |0 = 0|T {ψRα (x)ψRβ (y )} |0 † † † † and 0|T ψLα (x)ψLβ (y ) |0 = 0|T ψRα (x)ψRβ (y ) |0 and we can directly copy the results from what was derived in class and above: d4 k i e −i k · (x −y ) 4 k 2 − m2 + iε (2π ) 0|T {ψLα (x)ψLβ (y )} |0 = im(σ2 )αβ d4 k i e −i k · (x −y ) (2π )4 k 2 − m2 + iε † † 0|T ψLα (x)ψLβ (y ) |0 = −im(σ2 )αβ † For 0|T ψLα (x)ψLβ (y ) |0 , we need 2 s=1 (instead of = k · σ for right-handed spinors), so ¯ 2 s=1 uk,s u† k,s = † 0|T ψLα (x)ψLβ (y ) |0 = 2 s=1 vk,s v † k,s uk,s u† k,s = 2 s=1 vk,s v † k,s = k·σ † 0|T ψRα (x)ψRβ (y ) |0 under k · σ → k · σ ¯ so we get d4 k i(k · σ )αβ −ik·(x−y) e (2π )4 k 2 − m2 + iε † 0|T ψLα (x)ψLβ (y ) |0 = (iii) 0|T {ψα (x)ψβ (y )} |0 = 0|ψα (x)ψβ (y )|0 − 0|ψRβ (y )ψRα (x)|0 Since (¯ † ) a ( 0|ψα (x)ψβ (y )|0 = 0|ψαa) (x)ψβ and similarly (a) if x0 > y 0 if x0 < y 0 (y )|0 ∼ 0|aa† |0 = 0 ¯ † † (¯ 0|ψRβ (y )ψRα (x)|0 = 0|ψβ (y )ψαa ) (x)|0 ∼ 0|aa† |0 = 0, ¯ it follows that 0|T {ψα (x)ψβ (y )} |0 = 0 By the same argument ¯ ¯ 0|T ψα (x)ψβ (y ) |0 = if x0 > y 0 if x0 < y 0 † a ¯ ¯ ¯(a ) ¯(¯ ) 0|ψα (x)ψβ (y )|0 = 0|ψα (x)ψβ (y )|0 ∼ 0|aa† |0 = 0 ¯ † ¯β (y )ψα (x)|0 = − 0|ψ (a ) (y )ψ (¯ ) (x)|0 ∼ − 0|aa† |0 = 0 ¯ ¯ ¯a ¯ − 0|ψ Rα Rβ 9 So ¯ ¯ 0|T ψα (x)ψβ (y ) |0 = 0 ¯ 0|ψα (x)ψβ (y )|0 ¯ − 0|ψRβ (y )ψRα (x)|0 ¯ 0|T ψα (x)ψβ (y ) |0 = if x0 > y 0 if x0 < y 0 Let’s start with x0 > y 0 : (a† ) ( ¯ ¯ 0|ψα (x)ψβ (y )|0 = 0|ψαa) (x)ψβ (y )|0 dk dk ′ √ (2π )3/2 2k 0 2k ′0 = 2 ′ (uk,s )α (¯k′ ,s′ )β 0|ak,s a† ′ ′ |0 e−ik·x eik ·y u k ,s s,s′ =1 δs,s′ δ (k−k′ ) dk (2π )3/2 2k 0 = 2 (uk,s )α (¯k,s )β e−ik·(x−y) u s=1 dk / (k + m1)αβ e−ik·(x−y) (2π )3/2 2k 0 = Where in the last line we used 2 2 / / (uk,s u† γ 0 )αβ = ((k + m1)γ 0 γ 0 )αβ = (k + m1)αβ (uk,s )α (¯k,s )β = u s=1 k,s s=1 For y 0 > x0 : † (¯ ) a ¯ ¯(¯ − 0|ψRβ (y )ψRα (x)|0 = − 0|ψαa) (x)ψβ (y )|0 =− dk dk ′ √ (2π )3/2 2k 0 2k ′0 2 ′ (¯k,s )β (vk′ ,s′ )α 0|ak,s a† ′ ′ |0 e−ik·y eik ·y v k ,s s,s′ =1 δs,s′ δ (k−k′ ) =− = dk (2π )3/2 2k 0 2 (¯k,s )β (vk,s )α e−ik·(y−x) v s=1 dk / (−k + m1)αβ e−ik·(x−y) (2π )3/2 2k 0 Where in the last line we used 2 2 (¯k,s )β (vk,s )α = v s=1 2 (vk,s )α (¯k,s )β = v s=1 s=1 / / (vk,s v † γ 0 )αβ = ((k −m1)γ 0 γ 0 )αβ = (k −m1)αβ k,s Combining the two cases x0 > y 0 and y 0 > x0 using (3) and (4) we get ¯ 0|T ψα (x)ψβ (y ) |0 = / d4 k i(k + m1)αβ −ik·(x−y) e 4 k 2 − m2 + iε (2π ) 10 ...
View Full Document

This note was uploaded on 12/14/2011 for the course PHY 5667 taught by Professor Okui during the Fall '10 term at FSU.

Ask a homework question - tutors are online