HW4_STA5166_old_complete

HW4_STA5166_old_complete - Problem 4.1 a What kind of an...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Problem 4.1 a) What kind of an experimental design is this? Randomized Block Design b) Make a graphical analysis and an ANOVA. Analyzing each of the paint suppliers, the mean is different for each of them as illustrated above.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
ANOVA output > summary(fit1) Df Sum Sq Mean Sq F value Pr(>F) supplier 3 665.13 221.71 20.387 1.503e-05 *** site 5 568.71 113.74 10.459 0.0001808 *** Residuals 15 163.13 10.88 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 55 60 65 70 75 -2 0 2 4 6 fit1$fitted.values fit1$residuals Analyzing the residuals, assume no effect since no pattern and wide spread. CODE >Prob4.1=read.table(file="E:/FSU-FALL07-School/Fall07-school/STA5166/BHH2- Data/prb0401.dat", header=TRUE) >Prob4.1 > par(mfrow=c(1,1)) >plot(Prob4.1$supplier, Prob4.1$y) >fit1= aov(y~supplier + factor(site), data=Prob4.1) >fit2= aov(y~supplier, data=Prob4.1) >summary(fit1) >attributes(fit1) >par(mfrow=c(1,1)) >plot(fit1$fitted.values, fit1$residuals) ##LOAD BBH2 package >par(mfrow = c(1, 1), cex = 0.7) >anovaPlot(fit1, main = "Anova plot: problem 4.1",labels = TRUE, cex.lab = 0.6 )
Background image of page 2
c) Obtain confidence limits for the supplier averages Using R General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Linear Hypotheses: Estimate GS - FD == 0 9.8333 L - FD == 0 -2.0000 ZK - FD == 0 9.0000 L - GS == 0 -11.8333 ZK - GS == 0 -0.8333 ZK - L == 0 11.0000 Simultaneous Confidence Intervals for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: aov(formula = y ~ supplier, data = Prob4.1) Estimated Quantile = 2.799 Linear Hypotheses: Estimate lwr upr GS - FD == 0 9.83333 0.05797 19.60869 L - FD == 0 -2.00000 -11.77536 7.77536 ZK - FD == 0 9.00000 -0.77536 18.77536 L - GS == 0 -11.83333 -21.60869 -2.05797 ZK - GS == 0 -0.83333 -10.60869 8.94203 ZK - L == 0 11.00000 1.22464 20.77536 95% family-wise confidence level Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: aov(formula = y ~ supplier, data = Prob4.1) Linear Hypotheses: Estimate Std. Error t value p value GS - FD == 0 9.8333 3.4925 2.816 0.0641 . L - FD == 0
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 15

HW4_STA5166_old_complete - Problem 4.1 a What kind of an...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online