Economics Dynamics Problems 223

Economics Dynamics Problems 223 - Discrete systems of...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Discrete systems of equations 207 Table 5.3 Properties of matrices and Maple input Property Maple input Trace trace(mA); Transpose transpose(mA); Inverse inverse(mA); Determinant det(mA); Eigenvalues eigenvals(mA); or evalf(eigenvals(mA)); Eigenvectors eigenvects(mA); or evalf(eigenvects(mA)); Characteristic polynomial charpoly(mA,’lambda’); Matrix Power (power n ) evalm(mA^n) Square matrices have special properties. For illustrative purposes, let m A = 21 1 302 12 1 Typical properties are shown in table 5.3. The characteristic polynomial in Maple simply requires the input charpoly(mA,’lambda’); which in turn can be solved using solve(charpoly(mA,’lambda’)=0); or fsolve(charpoly(mA,’lambda’)=0,lambda,complex);
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online