448_Physics ProblemsTechnical Physics

448_Physics ProblemsTechnical Physics - 450 Oscillatory...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
450 Oscillatory Motion P15.30 ω π = 2 T : T == = 22 443 142 . . s = g L : L g = 980 0499 . . . af m P15.31 Using the simple harmonic motion model: Ar g L ° ° = = θ 1 180 0262 98 1 313 m 15 m ±ms m rad s 2 . . . (a) vA max .. = 0 262 0 820 m 3.13 s m s (b) aA max = 2 2 257 m 3.13 s m s 2 bg ar tan = α = a r tan 2 2 m rad s 1 . . (c) Fm a = 025 0641 kg 2.57 m s N 2 More precisely, FIG. P15.31 (a) mgh mv = 1 2 2 and hL =− 1c o s ∴= = vg L max cos . 21 0 8 1 7 a f ms (b) Im g L αθ = sin max sin sin . = mgL mL g L i 2 254 rad s 2 (c) g i max sin . . sin . . ° = 0250980 150 0634 a f N P15.32 (a) The string tension must support the weight of the bob, accelerate it upward, and also provide the restoring force, just as if the elevator were at rest in a gravity field
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online